Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor scalar reductions to use common execution policy #573

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions src/cunumeric/execution_policy/reduction/scalar_reduction.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
/* Copyright 2021-2022 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/

#pragma once

#include "cunumeric/execution_policy/reduction/scalar_reduction.h"
#include "cunumeric/cuda_help.h"

namespace cunumeric {
namespace scalar_reduction_impl {

template <class AccessorRD, class Kernel, class LHS, class Tag>
static __global__ void __launch_bounds__(THREADS_PER_BLOCK, MIN_CTAS_PER_SM)
scalar_unary_red_kernel(
size_t volume, size_t iters, AccessorRD out, Kernel kernel, LHS identity, Tag tag)
{
auto value = identity;
for (size_t idx = 0; idx < iters; idx++) {
const size_t offset = (idx * gridDim.x + blockIdx.x) * blockDim.x + threadIdx.x;
if (offset < volume) { kernel(value, offset, tag); }
}
// Every thread in the thread block must participate in the exchange to get correct results
reduce_output(out, value);
}

template <typename Buffer, typename RedAcc>
static __global__ void __launch_bounds__(1, 1) copy_kernel(Buffer result, RedAcc out)
{
out.reduce(0, result.read());
}

} // namespace scalar_reduction_impl

template <class LG_OP, class Tag>
struct ScalarReductionPolicy<VariantKind::GPU, LG_OP, Tag> {
template <class AccessorRD, class LHS, class Kernel>
void __attribute__((visibility("hidden"))) operator()(size_t volume,
AccessorRD& out,
const LHS& identity,
Kernel&& kernel)
{
auto stream = get_cached_stream();

const size_t blocks = (volume + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
DeviceScalarReductionBuffer<LG_OP> result(stream);
size_t shmem_size = THREADS_PER_BLOCK / 32 * sizeof(LHS);

if (blocks >= MAX_REDUCTION_CTAS) {
const size_t iters = (blocks + MAX_REDUCTION_CTAS - 1) / MAX_REDUCTION_CTAS;
scalar_reduction_impl::
scalar_unary_red_kernel<<<MAX_REDUCTION_CTAS, THREADS_PER_BLOCK, shmem_size, stream>>>(
volume, iters, result, std::forward<Kernel>(kernel), identity, Tag{});
} else {
scalar_reduction_impl::
scalar_unary_red_kernel<<<blocks, THREADS_PER_BLOCK, shmem_size, stream>>>(
volume, 1, result, std::forward<Kernel>(kernel), identity, Tag{});
}
scalar_reduction_impl::copy_kernel<<<1, 1, 0, stream>>>(result, out);
CHECK_CUDA_STREAM(stream);
}
};

} // namespace cunumeric
50 changes: 50 additions & 0 deletions src/cunumeric/execution_policy/reduction/scalar_reduction.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
/* Copyright 2021-2022 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/

#pragma once

#include "cunumeric/cunumeric.h"

namespace cunumeric {

template <VariantKind KIND, class LG_OP, class Tag = void>
struct ScalarReductionPolicy {
// No C++-20 yet. This is just here to illustrate the expected concept
// that all kernels passed to this execution should have.
struct KernelConcept {
// Every operator should take a scalar LHS as the
// target of the reduction and an index represeting the point
// in the iteration space being added into the reduction.
template <class LHS>
void operator()(LHS& lhs, size_t idx)
{
// LHS <- op[idx]
}
};
};

template <class LG_OP, class Tag>
struct ScalarReductionPolicy<VariantKind::CPU, LG_OP, Tag> {
template <class AccessorRD, class LHS, class Kernel>
void operator()(size_t volume, AccessorRD& out, const LHS& identity, Kernel&& kernel)
{
auto result = identity;
for (size_t idx = 0; idx < volume; ++idx) { kernel(result, idx, Tag{}); }
out.reduce(0, result);
}
};

} // namespace cunumeric
44 changes: 44 additions & 0 deletions src/cunumeric/execution_policy/reduction/scalar_reduction_omp.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
/* Copyright 2021-2022 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/

#pragma once

#include "cunumeric/execution_policy/reduction/scalar_reduction.h"
#include "cunumeric/omp_help.h"

#include <omp.h>

namespace cunumeric {

template <class LG_OP, class Tag>
struct ScalarReductionPolicy<VariantKind::OMP, LG_OP, Tag> {
template <class AccessorRD, class LHS, class Kernel>
void operator()(size_t volume, AccessorRD& out, const LHS& identity, Kernel&& kernel)
{
const auto max_threads = omp_get_max_threads();
ThreadLocalStorage<LHS> locals(max_threads);
for (auto idx = 0; idx < max_threads; ++idx) locals[idx] = identity;
#pragma omp parallel
{
const int tid = omp_get_thread_num();
#pragma omp for schedule(static)
for (size_t idx = 0; idx < volume; ++idx) { kernel(locals[tid], idx, Tag{}); }
}
for (auto idx = 0; idx < max_threads; ++idx) out.reduce(0, locals[idx]);
}
};

} // namespace cunumeric
98 changes: 0 additions & 98 deletions src/cunumeric/unary/scalar_unary_red.cc
Original file line number Diff line number Diff line change
Expand Up @@ -19,104 +19,6 @@

namespace cunumeric {

using namespace Legion;
using namespace legate;

template <UnaryRedCode OP_CODE, LegateTypeCode CODE, int DIM>
struct ScalarUnaryRedImplBody<VariantKind::CPU, OP_CODE, CODE, DIM> {
using OP = UnaryRedOp<OP_CODE, CODE>;
using LG_OP = typename OP::OP;
using RHS = legate_type_of<CODE>;

template <UnaryRedCode _OP_CODE = OP_CODE,
std::enable_if_t<!is_arg_reduce<_OP_CODE>::value>* = nullptr>
void operator()(OP func,
AccessorRD<LG_OP, true, 1> out,
AccessorRO<RHS, DIM> in,
const Rect<DIM>& rect,
const Pitches<DIM - 1>& pitches,
bool dense,
const Point<DIM>& shape) const
{
auto result = LG_OP::identity;
const size_t volume = rect.volume();
if (dense) {
auto inptr = in.ptr(rect);
for (size_t idx = 0; idx < volume; ++idx)
OP::template fold<true>(result, OP::convert(inptr[idx]));
} else {
for (size_t idx = 0; idx < volume; ++idx) {
auto p = pitches.unflatten(idx, rect.lo);
OP::template fold<true>(result, OP::convert(in[p]));
}
}
out.reduce(0, result);
}

template <UnaryRedCode _OP_CODE = OP_CODE,
std::enable_if_t<is_arg_reduce<_OP_CODE>::value>* = nullptr>
void operator()(OP func,
AccessorRD<LG_OP, true, 1> out,
AccessorRO<RHS, DIM> in,
const Rect<DIM>& rect,
const Pitches<DIM - 1>& pitches,
bool dense,
const Point<DIM>& shape) const
{
auto result = LG_OP::identity;
const size_t volume = rect.volume();
if (dense) {
auto inptr = in.ptr(rect);
for (size_t idx = 0; idx < volume; ++idx) {
auto p = pitches.unflatten(idx, rect.lo);
OP::template fold<true>(result, OP::convert(p, shape, inptr[idx]));
}
} else {
for (size_t idx = 0; idx < volume; ++idx) {
auto p = pitches.unflatten(idx, rect.lo);
OP::template fold<true>(result, OP::convert(p, shape, in[p]));
}
}
out.reduce(0, result);
}
};

template <LegateTypeCode CODE, int DIM>
struct ScalarUnaryRedImplBody<VariantKind::CPU, UnaryRedCode::CONTAINS, CODE, DIM> {
using OP = UnaryRedOp<UnaryRedCode::SUM, LegateTypeCode::BOOL_LT>;
using LG_OP = typename OP::OP;
using RHS = legate_type_of<CODE>;

void operator()(AccessorRD<LG_OP, true, 1> out,
AccessorRO<RHS, DIM> in,
const Store& to_find_scalar,
const Rect<DIM>& rect,
const Pitches<DIM - 1>& pitches,
bool dense) const
{
auto result = LG_OP::identity;
const auto to_find = to_find_scalar.scalar<RHS>();
const size_t volume = rect.volume();
if (dense) {
auto inptr = in.ptr(rect);
for (size_t idx = 0; idx < volume; ++idx)
if (inptr[idx] == to_find) {
result = true;
break;
}
} else {
for (size_t idx = 0; idx < volume; ++idx) {
auto point = pitches.unflatten(idx, rect.lo);
if (in[point] == to_find) {
result = true;
break;
}
}
}
out.reduce(0, result);
}
};

/*static*/ void ScalarUnaryRedTask::cpu_variant(TaskContext& context)
{
scalar_unary_red_template<VariantKind::CPU>(context);
Expand Down
Loading