Skip to content

This repository provides state of the art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue or submit Google form (with this information: research paper name, dataset, metric, source code and year). W…

License

Notifications You must be signed in to change notification settings

mtremya/state-of-the-art-result-for-machine-learning-problems

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 

Repository files navigation

State-of-the-art result for all Machine Learning Problems

LAST UPDATE: 11th November 2017

NEWS: I am looking for a Collaborator esp who does research in NLP, Computer Vision and Reinforcement learning. If you are not a researcher, but you are willing, contact me. Email me: [email protected]

This repository provides state-of-the-art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue (with this information: research paper name, dataset, metric, source code and year). We will fix it immediately.

You can also submit this Google Form if you are new to Github.

This is an attempt to make one stop for all types of machine learning problems state of the art result. I can not do this alone. I need help from everyone. Please submit the Google form/raise an issue if you find SOTA result for a dataset. Please share this on Twitter, Facebook, and other social media.

This summary is categorized into:

Supervised Learning

NLP

1. Language Modelling

Research Paper Datasets Metric Source Code Year
DYNAMIC EVALUATION OF NEURAL SEQUENCE MODELS
  • PTB
  • WikiText-2
  • Perplexity: 51.1
  • Perplexity: 44.3
Pytorch 2017
Averaged Stochastic Gradient Descent
with Weight Dropped LSTM or QRNN
  • PTB
  • WikiText-2
  • Perplexity: 52.8
  • Perplexity: 52.0
Pytorch 2017
FRATERNAL DROPOUT
  • PTB
  • WikiText-2
  • Perplexity: 56.8
  • Perplexity: 64.1
Pytorch 2017
Factorization tricks for LSTM networks One Billion Word Benchmark Perplexity: 23.36 Tensorflow 2017

2. Machine Translation

Research Paper Datasets Metric Source Code Year
Attention Is All You Need
  • WMT 2014 English-to-French
  • WMT 2014 English-to-German
  • BLEU: 41.0
  • BLEU: 28.4
2017
NON-AUTOREGRESSIVE NEURAL MACHINE TRANSLATION
  • WMT16 Ro→En
  • BLEU: 31.44
2017

3. Text Classification

Research Paper Datasets Metric Source Code Year
Learning Structured Text Representations Yelp Accuracy: 68.6 2017
Attentive Convolution Yelp Accuracy: 67.36 2017

4. Natural Language Inference

Leader board:

Stanford Natural Language Inference (SNLI)

MultiNLI

Research Paper Datasets Metric Source Code Year
NATURAL LANGUAGE INFERENCE OVER INTERACTION SPACE Stanford Natural Language Inference (SNLI) Accuracy: 88.9 Tensorflow 2017

5. Question Answering

Leader Board

SQuAD

Research Paper Datasets Metric Source Code Year
Interactive AoA Reader+ (ensemble) The Stanford Question Answering Dataset
  • Exact Match: 79.083
  • F1: 86.450
NOT YET AVAILABLE 2017

6. Named entity recognition

Research Paper Datasets Metric Source Code Year
Named Entity Recognition in Twitter
using Images and Text
Ritter F-measure: 0.59 NOT YET AVAILABLE 2017

Computer Vision

1. Classification

Research Paper Datasets Metric Source Code Year
Dynamic Routing Between Capsules
  • MNIST
  • Test Error: 0.25±0.005
2017
High-Performance Neural Networks for Visual Object Classification
  • NORB
  • Test Error: 2.53 ± 0.40
2011
ShakeDrop regularization
  • CIFAR-10
  • CIFAR-100
  • Test Error: 2.31%
  • Test Error: 12.19%
2017
Aggregated Residual Transformations for Deep Neural Networks
  • CIFAR-10
  • Test Error: 3.58%
2017
Dynamic Routing Between Capsules
  • MultiMNIST
  • Test Error: 5%
2017
Aggregated Residual Transformations for Deep Neural Networks
  • ImageNet-1k
  • Top-1 Error: 20.4%
2016

2. Instance Segmentation

Research Paper Datasets Metric Source Code Year
Mask R-CNN
  • COCO
  • Average Precision: 37.1%
2017

Speech

1. ASR

Research Paper Datasets Metric Source Code Year
The Microsoft 2017 Conversational Speech Recognition System Switchboard Hub5'00 WER: 5.1 NOT FOUND 2017

Semi-supervised Learning

Computer Vision

     
Research Paper Datasets Metric Source Code Year
DISTRIBUTIONAL SMOOTHINGWITH VIRTUAL ADVERSARIAL TRAINING
  • SVHN
  • NORB
  • Test error: 24.63
  • Test error: 9.88
Theano 2016
Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning
  • MNIST
  • Test error: 1.27
2017
Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro
  • Rank-1: 83.97 mAP: 66.07
  • Rank-1: 84.6 mAP: 87.4
  • Rank-1: 67.68 mAP: 47.13
  •          
  • Test Accuracy: 84.4
Matconvnet 2017

Unsupervised Learning

Computer Vision

1. Generative Model
Research Paper Datasets Metric Source Code Year
PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION Unsupervised CIFAR 10 Inception score: 8.80 Theano 2017

NLP

Machine Translation

Research Paper Datasets Metric Source Code Year
UNSUPERVISED MACHINE TRANSLATION USING MONOLINGUAL CORPORA ONLY
  • WMT16 (en-fr fr-en de-en en-de)
  • Multi30k-Task1(en-fr fr-en de-en en-de)
  • BLEU:(32.76 32.07 26.26 22.74)
  • BLEU:(15.05 14.31 13.33 9.64)
2017
## Transfer Learning

Reinforcement Learning

Email: [email protected]

About

This repository provides state of the art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue or submit Google form (with this information: research paper name, dataset, metric, source code and year). W…

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published