Python code for reproducing the results showed in the paper:"Distributional Smoothing with Virtual Adversarial Training" http://arxiv.org/abs/1507.00677
python 2.7, numpy 1.9, theano 0.7.0, docopt 0.6.2
./vis_model_contours.sh
The coutour images will be saved in ./figure
.
cd dataset
./download_mnist.sh
###VAT for supervised learning on MNIST dataset
python train_mnist_sup.py --cost_type=VAT_finite_diff --epsilon=2.1 --layer_sizes=784-1200-600-300-150-10 --save_filename=<filename>
###VAT for semi-supervised learning on MNIST dataset (with 100 labeled samples)
python train_mnist_semisup.py --cost_type=VAT_finite_diff --epsilon=0.3 --layer_sizes=784-1200-1200-10 --num_labeled_samples=100 --save_filename=<filename>
After finish training, the trained classifer will be saved with <filename>
in ./trained_model
.
You can obtain a test error of the trained classifier saved with <filename>
by the following command:
python test_mnist.py --load_filename=<filename>
.
If you find bug or problem, please report it!