-
Notifications
You must be signed in to change notification settings - Fork 339
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add support of insert by rows (#1434)
Signed-off-by: zhenshan.cao <[email protected]>
- Loading branch information
Showing
16 changed files
with
788 additions
and
350 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
import time | ||
import numpy as np | ||
from pymilvus import ( | ||
connections, | ||
utility, | ||
FieldSchema, CollectionSchema, DataType, | ||
Collection, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
dim = 8 | ||
|
||
print(fmt.format("start connecting to Milvus")) | ||
connections.connect("default", host="localhost", port="19530") | ||
|
||
has = utility.has_collection("hello_milvus") | ||
print(f"Does collection hello_milvus exist in Milvus: {has}") | ||
if has: | ||
utility.drop_collection("hello_milvus") | ||
|
||
fields = [ | ||
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100), | ||
FieldSchema(name="random", dtype=DataType.DOUBLE), | ||
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim) | ||
] | ||
|
||
schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs", enable_dynamic_field=True) | ||
|
||
print(fmt.format("Create collection `hello_milvus`")) | ||
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong") | ||
|
||
################################################################################ | ||
# 3. insert data | ||
hello_milvus2 = Collection("hello_milvus") | ||
print(fmt.format("Start inserting entities")) | ||
rng = np.random.default_rng(seed=19530) | ||
|
||
rows = [ | ||
{"pk": "1", "random": 1.0, "embeddings": rng.random((1, dim))[0], "a": 1}, | ||
{"pk": "2", "random": 1.0, "embeddings": rng.random((1, dim))[0], "b": 1}, | ||
{"pk": "3", "random": 1.0, "embeddings": rng.random((1, dim))[0], "c": 1}, | ||
{"pk": "4", "random": 1.0, "embeddings": rng.random((1, dim))[0], "d": 1}, | ||
{"pk": "5", "random": 1.0, "embeddings": rng.random((1, dim))[0], "e": 1}, | ||
{"pk": "6", "random": 1.0, "embeddings": rng.random((1, dim))[0], "f": 1}, | ||
] | ||
|
||
insert_result = hello_milvus.insert(rows) | ||
|
||
hello_milvus.insert({"pk": "7", "random": 1.0, "embeddings": rng.random((1, dim))[0], "g": 1}) | ||
hello_milvus.flush() | ||
print(f"Number of entities in Milvus: {hello_milvus.num_entities}") # check the num_entites | ||
|
||
# 4. create index | ||
print(fmt.format("Start Creating index IVF_FLAT")) | ||
index = { | ||
"index_type": "IVF_FLAT", | ||
"metric_type": "L2", | ||
"params": {"nlist": 128}, | ||
} | ||
|
||
hello_milvus.create_index("embeddings", index) | ||
|
||
print(fmt.format("Start loading")) | ||
hello_milvus.load() | ||
# ----------------------------------------------------------------------------- | ||
# search based on vector similarity | ||
print(fmt.format("Start searching based on vector similarity")) | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
vectors_to_search = rng.random((1, dim)) | ||
search_params = { | ||
"metric_type": "L2", | ||
"params": {"nprobe": 10}, | ||
} | ||
|
||
start_time = time.time() | ||
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["pk", "embeddings"]) | ||
end_time = time.time() | ||
|
||
for hits in result: | ||
for hit in hits: | ||
print(f"hit: {hit}") | ||
|
||
|
||
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["pk", "embeddings", "$meta"]) | ||
for hits in result: | ||
for hit in hits: | ||
print(f"hit: {hit}") | ||
|
||
expr = f'pk in ["1" , "2"] || g == 1' | ||
|
||
print(fmt.format(f"Start query with expr `{expr}`")) | ||
result = hello_milvus.query(expr=expr, output_fields=["random", "a", "g"]) | ||
for hit in result: | ||
print("hit:", hit) | ||
|
||
############################################################################### | ||
# 7. drop collection | ||
print(fmt.format("Drop collection `hello_milvus`")) | ||
utility.drop_collection("hello_milvus") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.