Skip to content

Commit

Permalink
Update examples 2- IL (#617)
Browse files Browse the repository at this point in the history
Signed-off-by: Daena Rys <[email protected]>
Co-authored-by: TuomasBorman <[email protected]>
  • Loading branch information
Daenarys8 and TuomasBorman authored Oct 4, 2024
1 parent aae1a1a commit b1ccaaa
Show file tree
Hide file tree
Showing 4 changed files with 175 additions and 490 deletions.
7 changes: 4 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: OMA
Title: Orchestrating Microbiome Analysis with Bioconductor
Version: 0.98.26
Version: 0.98.27
Date: 2024-10-01
Authors@R:
c(person("Leo", "Lahti", role = c("aut"),
Expand Down Expand Up @@ -62,6 +62,7 @@ Suggests:
gtools,
gsEasy,
igraph,
IntegratedLearner,
knitr,
Maaslin2,
mia,
Expand Down Expand Up @@ -97,7 +98,6 @@ Suggests:
SPRING,
stats,
stringr,
SuperLearner,
tidyverse,
topGO,
vegan,
Expand All @@ -109,7 +109,8 @@ Remotes:
github::microbiome/miaTime,
github::stefpeschel/NetCoMi,
github::zdk123/SpiecEasi,
github::GraceYoon/SPRING
github::GraceYoon/SPRING,
github::himelmallick/IntegratedLearner
VignetteBuilder: knitr
RoxygenNote: 7.3.1
BiocType: Book
Expand Down
11 changes: 1 addition & 10 deletions inst/pages/cross_correlation.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -48,15 +48,6 @@ data(HintikkaXOData, package = "mia")
mae <- HintikkaXOData
```

```{r cross-association2}
library(stringr)
# Drop those bacteria that do not include information in Phylum or lower levels
mae[[1]] <- mae[[1]][!is.na(rowData(mae[[1]])$Phylum), ]
# Clean taxonomy data, so that names do not include additional characters
rowData(mae[[1]]) <- DataFrame(
apply(rowData(mae[[1]]), 2, str_remove, pattern = "._[0-9]__"))
```

```{r}
# Available alternative experiments
experiments(mae)
Expand Down Expand Up @@ -84,7 +75,7 @@ bacterium X is present, is the concentration of metabolite Y lower or higher"?

```{r cross-correlation5}
# Agglomerate microbiome data at family level
mae[[1]] <- agglomerateByPrevalence(mae[[1]], rank = "Family")
mae[[1]] <- agglomerateByPrevalence(mae[[1]], rank = "Family", na.rm = TRUE)
# Does log10 transform for microbiome data
mae[[1]] <- transformAssay(mae[[1]], method = "log10", pseudocount = TRUE)
Expand Down
Loading

0 comments on commit b1ccaaa

Please sign in to comment.