Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Animated latent space #137

Merged
merged 2 commits into from
Aug 16, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
# %%
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from umap import UMAP
import matplotlib.pyplot as plt

from viscy.light.embedding_writer import read_embedding_dataset
from viscy.data.triplet import TripletDataset, TripletDataModule
from iohub import open_ome_zarr
Expand All @@ -16,7 +17,7 @@
# %% Paths and parameters.

features_path = Path(
"/hpc/projects/intracellular_dashboard/viral-sensor/infection_classification/models/contrastive_tune_augmentations/predict/2024_02_04/tokenized-drop_path_0_0.zarr"
"/hpc/projects/intracellular_dashboard/viral-sensor/infection_classification/models/contrastive_tune_augmentations/predict/2024_02_04/tokenized-drop_path_0_0-2024-06-13.zarr"
)
data_path = Path(
"/hpc/projects/virtual_staining/2024_02_04_A549_DENV_ZIKV_timelapse/registered_chunked.zarr"
Expand Down Expand Up @@ -152,10 +153,29 @@
# %%
# Compute UMAP over all features
features = embedding_dataset["features"]
# or select a well:
# features = features[features["fov_name"].str.contains("B/4")]

scaled_features = StandardScaler().fit_transform(features.values)
umap = UMAP()
# Fit UMAP on all features
embedding = umap.fit_transform(scaled_features)

# %%
# Add UMAP coordinates to the dataset

features = (
features.assign_coords(UMAP1=("sample", embedding[:, 0]))
.assign_coords(UMAP2=("sample", embedding[:, 1]))
.set_index(sample=["UMAP1", "UMAP2"], append=True)
)
features


sns.scatterplot(
x=features["UMAP1"], y=features["UMAP2"], hue=features["t"], s=7, alpha=0.8
)

# %%
# Transform the track features
scaled_features_track_umap = umap.transform(scaled_features_track)
Expand All @@ -172,15 +192,9 @@
color="blue",
)
plt.show()
# %%
# load all unprojected features:
features = embedding_dataset["features"]
# or select a well:
# features = features[features["fov_name"].str.contains("B/4")]
features

# %%
# examine raw features
# examine random features
random_samples = np.random.randint(0, embedding_dataset.sizes["sample"], 700)
# concatenate fov_name, track_id, and t to create a unique sample identifier
sample_id = (
Expand All @@ -191,7 +205,7 @@
+ features["t"][random_samples].astype(str)
)
px.imshow(
features.values[random_samples],
scaled_features[random_samples],
labels={
"x": "feature",
"y": "sample",
Expand All @@ -201,24 +215,6 @@
# show fov_name as y-axis
)

# %%
scaled_features = StandardScaler().fit_transform(features.values)

umap = UMAP()

embedding = umap.fit_transform(scaled_features)
features = (
features.assign_coords(UMAP1=("sample", embedding[:, 0]))
.assign_coords(UMAP2=("sample", embedding[:, 1]))
.set_index(sample=["UMAP1", "UMAP2"], append=True)
)
features

# %%
sns.scatterplot(
x=features["UMAP1"], y=features["UMAP2"], hue=features["t"], s=7, alpha=0.8
)


# %%
def load_annotation(da, path, name, categories: dict | None = None):
Expand Down Expand Up @@ -275,17 +271,28 @@ def load_annotation(da, path, name, categories: dict | None = None):

# %%
# interactive scatter plot to associate clusters with specific cells

px.scatter(
data_frame=pd.DataFrame(
{k: v for k, v in features.coords.items() if k != "features"}
),
df = pd.DataFrame({k: v for k, v in features.coords.items() if k != "features"})
df["infection"] = infection.values
df["division"] = division.values
df["well"] = df["fov_name"].str.rsplit("/", n=1).str[0]
df["fov_track_id"] = df["fov_name"] + "-" + df["track_id"].astype(str)
# select row B (DENV)
df = df[df["fov_name"].str.contains("B")]
df.sort_values("t", inplace=True)

g = px.scatter(
data_frame=df,
x="UMAP1",
y="UMAP2",
color=(infection.astype(str) + " " + division.astype(str)).rename("annotation"),
symbol="infection",
color="well",
hover_name="fov_name",
hover_data=["id", "t"],
hover_data=["id", "t", "track_id"],
animation_frame="t",
animation_group="fov_track_id",
)
g.update_layout(width=800, height=600)


# %%
# cluster features in heatmap directly
Expand Down
Loading