Skip to content

Commit

Permalink
fixes #491
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Dec 10, 2021
1 parent 0a935ae commit 4b632b8
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 7 deletions.
5 changes: 5 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,11 @@
+ `nbhs_pinfty_ge_real` -> `nbhs_pinfty_ge`
- in `measure.v`:
+ `measure_bigcup` -> `measure_bigsetU`
- in `ereal.v`:
+ `mulrEDr` -> `muleDr`
+ `mulrEDl` -> `muleDl`
+ `dmulrEDr` -> `dmuleDr`
+ `dmulrEDl` -> `dmuleDl`

### Removed

Expand Down
14 changes: 7 additions & 7 deletions theories/ereal.v
Original file line number Diff line number Diff line change
Expand Up @@ -1477,16 +1477,16 @@ Qed.

Local Open Scope ereal_scope.

Lemma mulrEDr x y z : x \is a fin_num -> y +? z -> x * (y + z) = x * y + x * z.
Lemma muleDr x y z : x \is a fin_num -> y +? z -> x * (y + z) = x * y + x * z.
Proof.
rewrite /mule/=; move: x y z => [x| |] [y| |] [z| |] //= _; try
(by case: ltgtP => // -[] <-; rewrite ?(mul0r,add0r,adde0))
|| (by case: ltgtP => //; rewrite adde0).
by rewrite mulrDr.
Qed.

Lemma mulrEDl x y z : x \is a fin_num -> y +? z -> (y + z) * x = y * x + z * x.
Proof. by move=> ? ?; rewrite -!(muleC x) mulrEDr. Qed.
Lemma muleDl x y z : x \is a fin_num -> y +? z -> (y + z) * x = y * x + z * x.
Proof. by move=> ? ?; rewrite -!(muleC x) muleDr. Qed.

Lemma ge0_muleDl x y z : 0 <= y -> 0 <= z -> (y + z) * x = y * x + z * x.
Proof.
Expand Down Expand Up @@ -1985,11 +1985,11 @@ Proof.
by move=> ?; rewrite !dual_addeE lee_oppl lee_oppr lee_subr_addr ?fin_numN.
Qed.

Lemma dmulrEDr x y z : x \is a fin_num -> y +? z -> x * (y + z) = x * y + x * z.
Proof. by move=> *; rewrite !dual_addeE muleN mulrEDr ?adde_defNN// !muleN. Qed.
Lemma dmuleDr x y z : x \is a fin_num -> y +? z -> x * (y + z) = x * y + x * z.
Proof. by move=> *; rewrite !dual_addeE muleN muleDr ?adde_defNN// !muleN. Qed.

Lemma dmulrEDl x y z : x \is a fin_num -> y +? z -> (y + z) * x = y * x + z * x.
Proof. by move=> *; rewrite -!(muleC x) dmulrEDr. Qed.
Lemma dmuleDl x y z : x \is a fin_num -> y +? z -> (y + z) * x = y * x + z * x.
Proof. by move=> *; rewrite -!(muleC x) dmuleDr. Qed.

Lemma dge0_muleDl x y z : 0 <= y -> 0 <= z -> (y + z) * x = y * x + z * x.
Proof. by move=> *; rewrite !dual_addeE mulNe le0_muleDl ?oppe_le0 ?mulNe. Qed.
Expand Down

0 comments on commit 4b632b8

Please sign in to comment.