Skip to content

Commit

Permalink
feat(CategoryTheory/Monoidal): replace 𝟙 X ⊗ f with X ◁ f (#10912)
Browse files Browse the repository at this point in the history
We set `id_tensorHom` and `tensorHom_id` as simp lemmas. Partially extracted from #6307.
  • Loading branch information
yuma-mizuno authored and dagurtomas committed Mar 22, 2024
1 parent 8bb63cc commit 15acb55
Show file tree
Hide file tree
Showing 26 changed files with 248 additions and 391 deletions.
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Category/AlgebraCat/Monoidal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ noncomputable instance instMonoidalCategory : MonoidalCategory (AlgebraCat.{u} R
leftUnitor_eq := fun X => by
dsimp only [forget₂_module_obj, forget₂_module_map, Iso.refl_symm, Iso.trans_hom,
Iso.refl_hom, tensorIso_hom]
simp only [MonoidalCategory.leftUnitor_conjugation, Category.id_comp, Iso.hom_inv_id]
erw [Category.id_comp, MonoidalCategory.tensor_id, Category.id_comp]
rfl
rightUnitor_eq := fun X => by
dsimp
Expand Down
2 changes: 0 additions & 2 deletions Mathlib/CategoryTheory/Bicategory/SingleObj.lean
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,6 @@ protected def star : MonoidalSingleObj C :=
PUnit.unit
#align category_theory.monoidal_single_obj.star CategoryTheory.MonoidalSingleObj.star

attribute [local simp] id_tensorHom tensorHom_id in

/-- The monoidal functor from the endomorphisms of the single object
when we promote a monoidal category to a single object bicategory,
to the original monoidal category.
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Closed/Monoidal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def unitClosed : Closed (𝟙_ C) where
right_inv := by aesop_cat }
homEquiv_naturality_left_symm := fun f g => by
dsimp
rw [leftUnitor_naturality'_assoc]
rw [leftUnitor_naturality_assoc]
-- This used to be automatic before leanprover/lean4#2644
homEquiv_naturality_right := by -- aesop failure
dsimp
Expand Down
41 changes: 23 additions & 18 deletions Mathlib/CategoryTheory/Enriched/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -53,10 +53,10 @@ class EnrichedCategory (C : Type u₁) where
Hom : C → C → V
id (X : C) : 𝟙_ V ⟶ Hom X X
comp (X Y Z : C) : Hom X Y ⊗ Hom Y Z ⟶ Hom X Z
id_comp (X Y : C) : (λ_ (Hom X Y)).inv ≫ (id X ⊗ 𝟙 _) ≫ comp X X Y = 𝟙 _ := by aesop_cat
comp_id (X Y : C) : (ρ_ (Hom X Y)).inv ≫ (𝟙 _ ⊗ id Y) ≫ comp X Y Y = 𝟙 _ := by aesop_cat
assoc (W X Y Z : C) : (α_ _ _ _).inv ≫ (comp W X Y ⊗ 𝟙 _) ≫ comp W Y Z =
(𝟙 _ ⊗ comp X Y Z) ≫ comp W X Z := by aesop_cat
id_comp (X Y : C) : (λ_ (Hom X Y)).inv ≫ id X ▷ _ ≫ comp X X Y = 𝟙 _ := by aesop_cat
comp_id (X Y : C) : (ρ_ (Hom X Y)).inv ≫ _ ◁ id Y ≫ comp X Y Y = 𝟙 _ := by aesop_cat
assoc (W X Y Z : C) : (α_ _ _ _).inv ≫ comp W X Y ▷ _ ≫ comp W Y Z =
_ ◁ comp X Y Z ≫ comp W X Z := by aesop_cat
#align category_theory.enriched_category CategoryTheory.EnrichedCategory

notation X " ⟶[" V "] " Y:10 => (EnrichedCategory.Hom X Y : V)
Expand All @@ -78,20 +78,20 @@ def eComp (X Y Z : C) : ((X ⟶[V] Y) ⊗ Y ⟶[V] Z) ⟶ X ⟶[V] Z :=
-- We don't just use `restate_axiom` here; that would leave `V` as an implicit argument.
@[reassoc (attr := simp)]
theorem e_id_comp (X Y : C) :
(λ_ (X ⟶[V] Y)).inv ≫ (eId V X ⊗ 𝟙 _) ≫ eComp V X X Y = 𝟙 (X ⟶[V] Y) :=
(λ_ (X ⟶[V] Y)).inv ≫ eId V X ▷ _ ≫ eComp V X X Y = 𝟙 (X ⟶[V] Y) :=
EnrichedCategory.id_comp X Y
#align category_theory.e_id_comp CategoryTheory.e_id_comp

@[reassoc (attr := simp)]
theorem e_comp_id (X Y : C) :
(ρ_ (X ⟶[V] Y)).inv ≫ (𝟙 _ ⊗ eId V Y) ≫ eComp V X Y Y = 𝟙 (X ⟶[V] Y) :=
(ρ_ (X ⟶[V] Y)).inv ≫ _ ◁ eId V Y ≫ eComp V X Y Y = 𝟙 (X ⟶[V] Y) :=
EnrichedCategory.comp_id X Y
#align category_theory.e_comp_id CategoryTheory.e_comp_id

@[reassoc (attr := simp)]
theorem e_assoc (W X Y Z : C) :
(α_ _ _ _).inv ≫ (eComp V W X Y ⊗ 𝟙 _) ≫ eComp V W Y Z =
(𝟙 _ ⊗ eComp V X Y Z) ≫ eComp V W X Z :=
(α_ _ _ _).inv ≫ eComp V W X Y ▷ _ ≫ eComp V W Y Z =
_ ◁ eComp V X Y Z ≫ eComp V W X Z :=
EnrichedCategory.assoc W X Y Z
#align category_theory.e_assoc CategoryTheory.e_assoc

Expand All @@ -114,18 +114,23 @@ instance (F : LaxMonoidalFunctor V W) : EnrichedCategory W (TransportEnrichment
id := fun X : C => F.ε ≫ F.map (eId V X)
comp := fun X Y Z : C => F.μ _ _ ≫ F.map (eComp V X Y Z)
id_comp X Y := by
rw [comp_tensor_id, Category.assoc, ← F.toFunctor.map_id, F.μ_natural_assoc,
F.toFunctor.map_id, F.left_unitality_inv_assoc, ← F.toFunctor.map_comp, ←
F.toFunctor.map_comp, e_id_comp, F.toFunctor.map_id]
simp only [comp_whiskerRight, Category.assoc, LaxMonoidalFunctor.μ_natural_left_assoc,
LaxMonoidalFunctor.left_unitality_inv_assoc]
simp_rw [← F.map_comp]
convert F.map_id _
simp
comp_id X Y := by
rw [id_tensor_comp, Category.assoc, ← F.toFunctor.map_id, F.μ_natural_assoc,
F.toFunctor.map_id, F.right_unitality_inv_assoc, ← F.toFunctor.map_comp, ←
F.toFunctor.map_comp, e_comp_id, F.toFunctor.map_id]
simp only [MonoidalCategory.whiskerLeft_comp, Category.assoc,
LaxMonoidalFunctor.μ_natural_right_assoc,
LaxMonoidalFunctor.right_unitality_inv_assoc]
simp_rw [← F.map_comp]
convert F.map_id _
simp
assoc P Q R S := by
rw [comp_tensor_id, Category.assoc, ← F.toFunctor.map_id, F.μ_natural_assoc,
F.toFunctor.map_id, ← F.associativity_inv_assoc, ← F.toFunctor.map_comp,
F.toFunctor.map_comp, e_assoc, id_tensor_comp, Category.assoc, ← F.toFunctor.map_id,
F.μ_natural_assoc, F.toFunctor.map_comp]
rw [comp_whiskerRight, Category.assoc, F.μ_natural_left_assoc,
← F.associativity_inv_assoc, ← F.map_comp, ← F.map_comp, e_assoc,
F.map_comp, MonoidalCategory.whiskerLeft_comp, Category.assoc,
LaxMonoidalFunctor.μ_natural_right_assoc]

end

Expand Down
10 changes: 5 additions & 5 deletions Mathlib/CategoryTheory/Monoidal/Bimod.lean
Original file line number Diff line number Diff line change
Expand Up @@ -255,7 +255,7 @@ theorem one_act_left' : (R.one ▷ _) ≫ actLeft P Q = (λ_ _).hom := by
slice_lhs 2 3 => rw [whiskerLeft_π_actLeft]
slice_lhs 1 2 => rw [associator_inv_naturality_left]
slice_lhs 2 3 => rw [← comp_whiskerRight, one_actLeft]
slice_rhs 1 2 => rw [leftUnitor_naturality']
slice_rhs 1 2 => rw [leftUnitor_naturality]
coherence
set_option linter.uppercaseLean3 false in
#align Bimod.tensor_Bimod.one_act_left' Bimod.TensorBimod.one_act_left'
Expand Down Expand Up @@ -668,7 +668,7 @@ theorem hom_inv_id : hom P ≫ inv P = 𝟙 _ := by
dsimp only [hom, inv, TensorBimod.X]
ext; dsimp
slice_lhs 1 2 => rw [coequalizer.π_desc]
slice_lhs 1 2 => rw [leftUnitor_inv_naturality']
slice_lhs 1 2 => rw [leftUnitor_inv_naturality]
slice_lhs 2 3 => rw [whisker_exchange]
slice_lhs 3 3 => rw [← Iso.inv_hom_id_assoc (α_ R.X R.X P.X) (R.X ◁ P.actLeft)]
slice_lhs 4 6 => rw [← Category.assoc, ← coequalizer.condition]
Expand Down Expand Up @@ -736,7 +736,7 @@ theorem hom_inv_id : hom P ≫ inv P = 𝟙 _ := by
dsimp only [hom, inv, TensorBimod.X]
ext; dsimp
slice_lhs 1 2 => rw [coequalizer.π_desc]
slice_lhs 1 2 => rw [rightUnitor_inv_naturality']
slice_lhs 1 2 => rw [rightUnitor_inv_naturality]
slice_lhs 2 3 => rw [← whisker_exchange]
slice_lhs 3 4 => rw [coequalizer.condition]
slice_lhs 2 3 => rw [associator_naturality_right]
Expand Down Expand Up @@ -858,7 +858,7 @@ theorem id_whiskerLeft_bimod {X Y : Mon_ C} {M N : Bimod X Y} (f : M ⟶ N) :
slice_rhs 1 2 => rw [coequalizer.π_desc]
dsimp [LeftUnitorBimod.inv]
slice_rhs 1 2 => rw [Hom.left_act_hom]
slice_rhs 2 3 => rw [leftUnitor_inv_naturality']
slice_rhs 2 3 => rw [leftUnitor_inv_naturality]
slice_rhs 3 4 => rw [whisker_exchange]
slice_rhs 4 4 => rw [← Iso.inv_hom_id_assoc (α_ X.X X.X N.X) (X.X ◁ N.actLeft)]
slice_rhs 5 7 => rw [← Category.assoc, ← coequalizer.condition]
Expand Down Expand Up @@ -918,7 +918,7 @@ theorem whiskerRight_id_bimod {X Y : Mon_ C} {M N : Bimod X Y} (f : M ⟶ N) :
slice_rhs 1 2 => rw [coequalizer.π_desc]
dsimp [RightUnitorBimod.inv]
slice_rhs 1 2 => rw [Hom.right_act_hom]
slice_rhs 2 3 => rw [rightUnitor_inv_naturality']
slice_rhs 2 3 => rw [rightUnitor_inv_naturality]
slice_rhs 3 4 => rw [← whisker_exchange]
slice_rhs 4 5 => rw [coequalizer.condition]
slice_rhs 3 4 => rw [associator_naturality_right]
Expand Down
37 changes: 17 additions & 20 deletions Mathlib/CategoryTheory/Monoidal/Braided.lean
Original file line number Diff line number Diff line change
Expand Up @@ -206,37 +206,37 @@ def braidedCategoryOfFaithful {C D : Type*} [Category C] [Category D] [MonoidalC
intros
apply F.map_injective
refine (cancel_epi (F.μ ?_ ?_)).1 ?_
rw [Functor.map_comp, ← LaxMonoidalFunctor.μ_natural_left'_assoc, w, Functor.map_comp,
reassoc_of% w, braiding_naturality_left_assoc, LaxMonoidalFunctor.μ_natural_right']
rw [Functor.map_comp, ← LaxMonoidalFunctor.μ_natural_left_assoc, w, Functor.map_comp,
reassoc_of% w, braiding_naturality_left_assoc, LaxMonoidalFunctor.μ_natural_right]
braiding_naturality_right := by
intros
apply F.map_injective
refine (cancel_epi (F.μ ?_ ?_)).1 ?_
rw [Functor.map_comp, ← LaxMonoidalFunctor.μ_natural_right'_assoc, w, Functor.map_comp,
reassoc_of% w, braiding_naturality_right_assoc, LaxMonoidalFunctor.μ_natural_left']
rw [Functor.map_comp, ← LaxMonoidalFunctor.μ_natural_right_assoc, w, Functor.map_comp,
reassoc_of% w, braiding_naturality_right_assoc, LaxMonoidalFunctor.μ_natural_left]
hexagon_forward := by
intros
apply F.map_injective
refine (cancel_epi (F.μ _ _)).1 ?_
refine (cancel_epi (F.μ _ _ ▷ _)).1 ?_
rw [Functor.map_comp, Functor.map_comp, Functor.map_comp, Functor.map_comp, ←
LaxMonoidalFunctor.μ_natural_left'_assoc, ← comp_whiskerRight_assoc, w,
comp_whiskerRight_assoc, LaxMonoidalFunctor.associativity'_assoc,
LaxMonoidalFunctor.associativity'_assoc, ← LaxMonoidalFunctor.μ_natural_right', ←
LaxMonoidalFunctor.μ_natural_left_assoc, ← comp_whiskerRight_assoc, w,
comp_whiskerRight_assoc, LaxMonoidalFunctor.associativity_assoc,
LaxMonoidalFunctor.associativity_assoc, ← LaxMonoidalFunctor.μ_natural_right, ←
MonoidalCategory.whiskerLeft_comp_assoc, w, MonoidalCategory.whiskerLeft_comp_assoc,
reassoc_of% w, braiding_naturality_right_assoc,
LaxMonoidalFunctor.associativity', hexagon_forward_assoc]
LaxMonoidalFunctor.associativity, hexagon_forward_assoc]
hexagon_reverse := by
intros
apply F.toFunctor.map_injective
refine (cancel_epi (F.μ _ _)).1 ?_
refine (cancel_epi (_ ◁ F.μ _ _)).1 ?_
rw [Functor.map_comp, Functor.map_comp, Functor.map_comp, Functor.map_comp, ←
LaxMonoidalFunctor.μ_natural_right'_assoc, ← MonoidalCategory.whiskerLeft_comp_assoc, w,
MonoidalCategory.whiskerLeft_comp_assoc, LaxMonoidalFunctor.associativity_inv'_assoc,
LaxMonoidalFunctor.associativity_inv'_assoc, ← LaxMonoidalFunctor.μ_natural_left',
LaxMonoidalFunctor.μ_natural_right_assoc, ← MonoidalCategory.whiskerLeft_comp_assoc, w,
MonoidalCategory.whiskerLeft_comp_assoc, LaxMonoidalFunctor.associativity_inv_assoc,
LaxMonoidalFunctor.associativity_inv_assoc, ← LaxMonoidalFunctor.μ_natural_left,
← comp_whiskerRight_assoc, w, comp_whiskerRight_assoc, reassoc_of% w,
braiding_naturality_left_assoc, LaxMonoidalFunctor.associativity_inv', hexagon_reverse_assoc]
braiding_naturality_left_assoc, LaxMonoidalFunctor.associativity_inv, hexagon_reverse_assoc]
#align category_theory.braided_category_of_faithful CategoryTheory.braidedCategoryOfFaithful

/-- Pull back a braiding along a fully faithful monoidal functor. -/
Expand Down Expand Up @@ -290,7 +290,7 @@ theorem braiding_leftUnitor_aux₂ (X : C) :
_ = (α_ _ _ _).hom ≫ (_ ◁ (λ_ _).hom) ≫ (β_ _ _).hom ≫ (β_ X _).inv :=
by (slice_lhs 2 3 => rw [← braiding_naturality_right]); simp only [assoc]
_ = (α_ _ _ _).hom ≫ (_ ◁ (λ_ _).hom) := by rw [Iso.hom_inv_id, comp_id]
_ = (ρ_ X).hom ▷ 𝟙_ C := by rw [triangle']
_ = (ρ_ X).hom ▷ 𝟙_ C := by rw [triangle]

#align category_theory.braiding_left_unitor_aux₂ CategoryTheory.braiding_leftUnitor_aux₂

Expand Down Expand Up @@ -323,7 +323,7 @@ theorem braiding_rightUnitor_aux₂ (X : C) :
_ = (α_ _ _ _).inv ≫ ((ρ_ _).hom ▷ _) ≫ (β_ _ X).hom ≫ (β_ _ _).inv :=
by (slice_lhs 2 3 => rw [← braiding_naturality_left]); simp only [assoc]
_ = (α_ _ _ _).inv ≫ ((ρ_ _).hom ▷ _) := by rw [Iso.hom_inv_id, comp_id]
_ = 𝟙_ C ◁ (λ_ X).hom := by rw [triangle_assoc_comp_right']
_ = 𝟙_ C ◁ (λ_ X).hom := by rw [triangle_assoc_comp_right]

#align category_theory.braiding_right_unitor_aux₂ CategoryTheory.braiding_rightUnitor_aux₂

Expand Down Expand Up @@ -552,8 +552,6 @@ theorem tensor_μ_natural {X₁ X₂ Y₁ Y₂ U₁ U₂ V₁ V₂ : C} (f₁ :
simp only [assoc]
#align category_theory.tensor_μ_natural CategoryTheory.tensor_μ_natural

attribute [local simp] id_tensorHom tensorHom_id

@[reassoc]
theorem tensor_μ_natural_left {X₁ X₂ Y₁ Y₂ : C} (f₁: X₁ ⟶ Y₁) (f₂ : X₂ ⟶ Y₂) (Z₁ Z₂ : C) :
(f₁ ⊗ f₂) ▷ (Z₁ ⊗ Z₂) ≫ tensor_μ C (Y₁, Y₂) (Z₁, Z₂) =
Expand Down Expand Up @@ -737,11 +735,10 @@ monoidal opposite, upgraded to a braided functor. -/
@[simps!] def mopBraidedFunctor : BraidedFunctor C Cᴹᵒᵖ where
μ X Y := (β_ (mop X) (mop Y)).hom
ε := 𝟙 (𝟙_ Cᴹᵒᵖ)
-- `id_tensorHom`, `tensorHom_id` should be simp lemmas when #6307 is merged
-- we could then make this fully automated if we mark `yang_baxter` as simp
-- we could make this fully automated if we mark `← yang_baxter_assoc` as simp
-- should it be marked as such?
associativity X Y Z := by
simp [id_tensorHom, tensorHom_id, ← yang_baxter_assoc]
simp [← yang_baxter_assoc]
__ := mopFunctor C

/-- The identity functor on `C`, viewed as a functor from the
Expand All @@ -750,7 +747,7 @@ monoidal opposite of `C` to `C`, upgraded to a braided functor. -/
μ X Y := (β_ (unmop X) (unmop Y)).hom
ε := 𝟙 (𝟙_ C)
associativity X Y Z := by
simp [id_tensorHom, tensorHom_id, ← yang_baxter_assoc]
simp [← yang_baxter_assoc]
__ := unmopFunctor C

end MonoidalOpposite
Expand Down
Loading

0 comments on commit 15acb55

Please sign in to comment.