Skip to content

Commit

Permalink
fix: denote alternating map by ⋀, not Λ (#11064)
Browse files Browse the repository at this point in the history
That is, `\bigwedge`, not `\Lambda`




Co-authored-by: Richard Copley <[email protected]>
Co-authored-by: Patrick Massot <[email protected]>
  • Loading branch information
3 people authored and dagurtomas committed Mar 22, 2024
1 parent df1f06c commit 8bb63cc
Show file tree
Hide file tree
Showing 11 changed files with 219 additions and 217 deletions.
6 changes: 3 additions & 3 deletions Mathlib/Analysis/InnerProductSpace/Orientation.lean
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ theorem det_eq_neg_det_of_opposite_orientation (h : e.toBasis.orientation ≠ f.
rw [e.toBasis.det.eq_smul_basis_det f.toBasis]
-- Porting note: added `neg_one_smul` with explicit type
simp [e.det_to_matrix_orthonormalBasis_of_opposite_orientation f h,
neg_one_smul ℝ (M := E [Λ^ι]→ₗ[ℝ] ℝ)]
neg_one_smul ℝ (M := E [^ι]→ₗ[ℝ] ℝ)]
#align orthonormal_basis.det_eq_neg_det_of_opposite_orientation OrthonormalBasis.det_eq_neg_det_of_opposite_orientation

section AdjustToOrientation
Expand Down Expand Up @@ -178,10 +178,10 @@ variable [_i : Fact (finrank ℝ E = n)] (o : Orientation ℝ E (Fin n))
/-- The volume form on an oriented real inner product space, a nonvanishing top-dimensional
alternating form uniquely defined by compatibility with the orientation and inner product structure.
-/
irreducible_def volumeForm : E [Λ^Fin n]→ₗ[ℝ] ℝ := by
irreducible_def volumeForm : E [^Fin n]→ₗ[ℝ] ℝ := by
classical
cases' n with n
· let opos : E [Λ^Fin 0]→ₗ[ℝ] ℝ := .constOfIsEmpty ℝ E (Fin 0) (1 : ℝ)
· let opos : E [^Fin 0]→ₗ[ℝ] ℝ := .constOfIsEmpty ℝ E (Fin 0) (1 : ℝ)
exact o.eq_or_eq_neg_of_isEmpty.by_cases (fun _ => opos) fun _ => -opos
· exact (o.finOrthonormalBasis n.succ_pos _i.out).toBasis.det
#align orientation.volume_form Orientation.volumeForm
Expand Down
6 changes: 3 additions & 3 deletions Mathlib/Analysis/InnerProductSpace/TwoDim.lean
Original file line number Diff line number Diff line change
Expand Up @@ -93,10 +93,10 @@ namespace Orientation
notation `ω`). When evaluated on two vectors, it gives the oriented area of the parallelogram they
span. -/
irreducible_def areaForm : E →ₗ[ℝ] E →ₗ[ℝ] ℝ := by
let z : E [Λ^Fin 0]→ₗ[ℝ] ℝ ≃ₗ[ℝ] ℝ :=
let z : E [^Fin 0]→ₗ[ℝ] ℝ ≃ₗ[ℝ] ℝ :=
AlternatingMap.constLinearEquivOfIsEmpty.symm
let y : E [Λ^Fin 1]→ₗ[ℝ] ℝ →ₗ[ℝ] E →ₗ[ℝ] ℝ :=
LinearMap.llcomp ℝ E (E [Λ^Fin 0]→ₗ[ℝ] ℝ) ℝ z ∘ₗ AlternatingMap.curryLeftLinearMap
let y : E [^Fin 1]→ₗ[ℝ] ℝ →ₗ[ℝ] E →ₗ[ℝ] ℝ :=
LinearMap.llcomp ℝ E (E [^Fin 0]→ₗ[ℝ] ℝ) ℝ z ∘ₗ AlternatingMap.curryLeftLinearMap
exact y ∘ₗ AlternatingMap.curryLeftLinearMap (R' := ℝ) o.volumeForm
#align orientation.area_form Orientation.areaForm

Expand Down
194 changes: 97 additions & 97 deletions Mathlib/LinearAlgebra/Alternating/Basic.lean

Large diffs are not rendered by default.

26 changes: 13 additions & 13 deletions Mathlib/LinearAlgebra/Alternating/DomCoprod.lean
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ open Equiv
variable [DecidableEq ιa] [DecidableEq ιb]

/-- summand used in `AlternatingMap.domCoprod` -/
def domCoprod.summand (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→ₗ[R'] N₂)
def domCoprod.summand (a : Mᵢ [^ιa]→ₗ[R'] N₁) (b : Mᵢ [^ιb]→ₗ[R'] N₂)
(σ : Perm.ModSumCongr ιa ιb) : MultilinearMap R' (fun _ : Sum ιa ιb => Mᵢ) (N₁ ⊗[R'] N₂) :=
Quotient.liftOn' σ
(fun σ =>
Expand All @@ -66,7 +66,7 @@ def domCoprod.summand (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→
erw [← a.map_congr_perm fun i => v (σ₁ _), ← b.map_congr_perm fun i => v (σ₁ _)]
#align alternating_map.dom_coprod.summand AlternatingMap.domCoprod.summand

theorem domCoprod.summand_mk'' (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→ₗ[R'] N₂)
theorem domCoprod.summand_mk'' (a : Mᵢ [^ιa]→ₗ[R'] N₁) (b : Mᵢ [^ιb]→ₗ[R'] N₂)
(σ : Equiv.Perm (Sum ιa ιb)) :
domCoprod.summand a b (Quotient.mk'' σ) =
Equiv.Perm.sign σ •
Expand All @@ -76,8 +76,8 @@ theorem domCoprod.summand_mk'' (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^
#align alternating_map.dom_coprod.summand_mk' AlternatingMap.domCoprod.summand_mk''

/-- Swapping elements in `σ` with equal values in `v` results in an addition that cancels -/
theorem domCoprod.summand_add_swap_smul_eq_zero (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁)
(b : Mᵢ [Λ^ιb]→ₗ[R'] N₂) (σ : Perm.ModSumCongr ιa ιb) {v : Sum ιa ιb → Mᵢ}
theorem domCoprod.summand_add_swap_smul_eq_zero (a : Mᵢ [^ιa]→ₗ[R'] N₁)
(b : Mᵢ [^ιb]→ₗ[R'] N₂) (σ : Perm.ModSumCongr ιa ιb) {v : Sum ιa ιb → Mᵢ}
{i j : Sum ιa ιb} (hv : v i = v j) (hij : i ≠ j) :
domCoprod.summand a b σ v + domCoprod.summand a b (swap i j • σ) v = 0 := by
refine Quotient.inductionOn' σ fun σ => ?_
Expand All @@ -94,8 +94,8 @@ theorem domCoprod.summand_add_swap_smul_eq_zero (a : Mᵢ [Λ^ιa]→ₗ[R'] N

/-- Swapping elements in `σ` with equal values in `v` result in zero if the swap has no effect
on the quotient. -/
theorem domCoprod.summand_eq_zero_of_smul_invariant (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁)
(b : Mᵢ [Λ^ιb]→ₗ[R'] N₂) (σ : Perm.ModSumCongr ιa ιb) {v : Sum ιa ιb → Mᵢ}
theorem domCoprod.summand_eq_zero_of_smul_invariant (a : Mᵢ [^ιa]→ₗ[R'] N₁)
(b : Mᵢ [^ιb]→ₗ[R'] N₂) (σ : Perm.ModSumCongr ιa ιb) {v : Sum ιa ιb → Mᵢ}
{i j : Sum ιa ιb} (hv : v i = v j) (hij : i ≠ j) :
swap i j • σ = σ → domCoprod.summand a b σ v = 0 := by
refine Quotient.inductionOn' σ fun σ => ?_
Expand Down Expand Up @@ -154,8 +154,8 @@ The specialized version can be obtained by combining this definition with `finSu
`LinearMap.mul'`.
-/
@[simps]
def domCoprod (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→ₗ[R'] N₂) :
Mᵢ [Λ^ιa ⊕ ιb]→ₗ[R'] (N₁ ⊗[R'] N₂) :=
def domCoprod (a : Mᵢ [^ιa]→ₗ[R'] N₁) (b : Mᵢ [^ιb]→ₗ[R'] N₂) :
Mᵢ [^ιa ⊕ ιb]→ₗ[R'] (N₁ ⊗[R'] N₂) :=
{ ∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ with
toFun := fun v => (⇑(∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ)) v
map_eq_zero_of_eq' := fun v i j hv hij => by
Expand All @@ -170,7 +170,7 @@ def domCoprod (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→ₗ[R'] N
#align alternating_map.dom_coprod AlternatingMap.domCoprod
#align alternating_map.dom_coprod_apply AlternatingMap.domCoprod_apply

theorem domCoprod_coe (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→ₗ[R'] N₂) :
theorem domCoprod_coe (a : Mᵢ [^ιa]→ₗ[R'] N₁) (b : Mᵢ [^ιb]→ₗ[R'] N₂) :
(↑(a.domCoprod b) : MultilinearMap R' (fun _ => Mᵢ) _) =
∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ :=
MultilinearMap.ext fun _ => rfl
Expand All @@ -179,8 +179,8 @@ theorem domCoprod_coe (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→
/-- A more bundled version of `AlternatingMap.domCoprod` that maps
`((ι₁ → N) → N₁) ⊗ ((ι₂ → N) → N₂)` to `(ι₁ ⊕ ι₂ → N) → N₁ ⊗ N₂`. -/
def domCoprod' :
(Mᵢ [Λ^ιa]→ₗ[R'] N₁) ⊗[R'] (Mᵢ [Λ^ιb]→ₗ[R'] N₂) →ₗ[R']
(Mᵢ [Λ^ιa ⊕ ιb]→ₗ[R'] (N₁ ⊗[R'] N₂)) :=
(Mᵢ [^ιa]→ₗ[R'] N₁) ⊗[R'] (Mᵢ [^ιb]→ₗ[R'] N₂) →ₗ[R']
(Mᵢ [^ιa ⊕ ιb]→ₗ[R'] (N₁ ⊗[R'] N₂)) :=
TensorProduct.lift <| by
refine'
LinearMap.mk₂ R' domCoprod (fun m₁ m₂ n => _) (fun c m n => _) (fun m n₁ n₂ => _)
Expand All @@ -200,7 +200,7 @@ def domCoprod' :
#align alternating_map.dom_coprod' AlternatingMap.domCoprod'

@[simp]
theorem domCoprod'_apply (a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→ₗ[R'] N₂) :
theorem domCoprod'_apply (a : Mᵢ [^ιa]→ₗ[R'] N₁) (b : Mᵢ [^ιb]→ₗ[R'] N₂) :
domCoprod' (a ⊗ₜ[R'] b) = domCoprod a b :=
rfl
#align alternating_map.dom_coprod'_apply AlternatingMap.domCoprod'_apply
Expand Down Expand Up @@ -271,7 +271,7 @@ theorem MultilinearMap.domCoprod_alternization [DecidableEq ιa] [DecidableEq ι
`AlternatingMap`s gives a scaled version of the `AlternatingMap.coprod` of those maps.
-/
theorem MultilinearMap.domCoprod_alternization_eq [DecidableEq ιa] [DecidableEq ιb]
(a : Mᵢ [Λ^ιa]→ₗ[R'] N₁) (b : Mᵢ [Λ^ιb]→ₗ[R'] N₂) :
(a : Mᵢ [^ιa]→ₗ[R'] N₁) (b : Mᵢ [^ιb]→ₗ[R'] N₂) :
MultilinearMap.alternatization
(MultilinearMap.domCoprod a b : MultilinearMap R' (fun _ : Sum ιa ιb => Mᵢ) (N₁ ⊗ N₂)) =
((Fintype.card ιa).factorial * (Fintype.card ιb).factorial) • a.domCoprod b := by
Expand Down
8 changes: 4 additions & 4 deletions Mathlib/LinearAlgebra/Determinant.lean
Original file line number Diff line number Diff line change
Expand Up @@ -504,7 +504,7 @@ theorem LinearMap.associated_det_comp_equiv {N : Type*} [AddCommGroup N] [Module

/-- The determinant of a family of vectors with respect to some basis, as an alternating
multilinear map. -/
nonrec def Basis.det : M [Λ^ι]→ₗ[R] R where
nonrec def Basis.det : M [^ι]→ₗ[R] R where
toFun v := det (e.toMatrix v)
map_add' := by
intro inst v i x y
Expand Down Expand Up @@ -570,7 +570,7 @@ theorem Basis.isUnit_det (e' : Basis ι R M) : IsUnit (e.det e') :=

/-- Any alternating map to `R` where `ι` has the cardinality of a basis equals the determinant
map with respect to that basis, multiplied by the value of that alternating map on that basis. -/
theorem AlternatingMap.eq_smul_basis_det (f : M [Λ^ι]→ₗ[R] R) : f = f e • e.det := by
theorem AlternatingMap.eq_smul_basis_det (f : M [^ι]→ₗ[R] R) : f = f e • e.det := by
refine' Basis.ext_alternating e fun i h => _
let σ : Equiv.Perm ι := Equiv.ofBijective i (Finite.injective_iff_bijective.1 h)
change f (e ∘ σ) = (f e • e.det) (e ∘ σ)
Expand All @@ -579,7 +579,7 @@ theorem AlternatingMap.eq_smul_basis_det (f : M [Λ^ι]→ₗ[R] R) : f = f e

@[simp]
theorem AlternatingMap.map_basis_eq_zero_iff {ι : Type*} [Finite ι] (e : Basis ι R M)
(f : M [Λ^ι]→ₗ[R] R) : f e = 0 ↔ f = 0 :=
(f : M [^ι]→ₗ[R] R) : f e = 0 ↔ f = 0 :=
fun h => by
cases nonempty_fintype ι
letI := Classical.decEq ι
Expand All @@ -588,7 +588,7 @@ theorem AlternatingMap.map_basis_eq_zero_iff {ι : Type*} [Finite ι] (e : Basis
#align alternating_map.map_basis_eq_zero_iff AlternatingMap.map_basis_eq_zero_iff

theorem AlternatingMap.map_basis_ne_zero_iff {ι : Type*} [Finite ι] (e : Basis ι R M)
(f : M [Λ^ι]→ₗ[R] R) : f e ≠ 0 ↔ f ≠ 0 :=
(f : M [^ι]→ₗ[R] R) : f e ≠ 0 ↔ f ≠ 0 :=
not_congr <| f.map_basis_eq_zero_iff e
#align alternating_map.map_basis_ne_zero_iff AlternatingMap.map_basis_ne_zero_iff

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/LinearAlgebra/ExteriorAlgebra/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,7 @@ variable (R)
This is a special case of `MultilinearMap.mkPiAlgebraFin`, and the exterior algebra version of
`TensorAlgebra.tprod`. -/
def ιMulti (n : ℕ) : M [Λ^Fin n]→ₗ[R] ExteriorAlgebra R M :=
def ιMulti (n : ℕ) : M [^Fin n]→ₗ[R] ExteriorAlgebra R M :=
let F := (MultilinearMap.mkPiAlgebraFin R n (ExteriorAlgebra R M)).compLinearMap fun _ => ι R
{ F with
map_eq_zero_of_eq' := fun f x y hfxy hxy => by
Expand Down
24 changes: 12 additions & 12 deletions Mathlib/LinearAlgebra/ExteriorAlgebra/OfAlternating.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ variable [Module R M] [Module R N] [Module R N']

-- This instance can't be found where it's needed if we don't remind lean that it exists.
instance AlternatingMap.instModuleAddCommGroup {ι : Type*} :
Module R (M [Λ^ι]→ₗ[R] N) := by
Module R (M [^ι]→ₗ[R] N) := by
infer_instance
#align alternating_map.module_add_comm_group AlternatingMap.instModuleAddCommGroup

Expand All @@ -43,10 +43,10 @@ open CliffordAlgebra hiding ι

/-- Build a map out of the exterior algebra given a collection of alternating maps acting on each
exterior power -/
def liftAlternating : (∀ i, M [Λ^Fin i]→ₗ[R] N) →ₗ[R] ExteriorAlgebra R M →ₗ[R] N := by
def liftAlternating : (∀ i, M [^Fin i]→ₗ[R] N) →ₗ[R] ExteriorAlgebra R M →ₗ[R] N := by
suffices
(∀ i, M [Λ^Fin i]→ₗ[R] N) →ₗ[R]
ExteriorAlgebra R M →ₗ[R] ∀ i, M [Λ^Fin i]→ₗ[R] N by
(∀ i, M [^Fin i]→ₗ[R] N) →ₗ[R]
ExteriorAlgebra R M →ₗ[R] ∀ i, M [^Fin i]→ₗ[R] N by
refine' LinearMap.compr₂ this _
refine' (LinearEquiv.toLinearMap _).comp (LinearMap.proj 0)
exact AlternatingMap.constLinearEquivOfIsEmpty.symm
Expand All @@ -67,7 +67,7 @@ def liftAlternating : (∀ i, M [Λ^Fin i]→ₗ[R] N) →ₗ[R] ExteriorAlgebra
#align exterior_algebra.lift_alternating ExteriorAlgebra.liftAlternating

@[simp]
theorem liftAlternating_ι (f : ∀ i, M [Λ^Fin i]→ₗ[R] N) (m : M) :
theorem liftAlternating_ι (f : ∀ i, M [^Fin i]→ₗ[R] N) (m : M) :
liftAlternating (R := R) (M := M) (N := N) f (ι R m) = f 1 ![m] := by
dsimp [liftAlternating]
rw [foldl_ι, LinearMap.mk₂_apply, AlternatingMap.curryLeft_apply_apply]
Expand All @@ -78,7 +78,7 @@ theorem liftAlternating_ι (f : ∀ i, M [Λ^Fin i]→ₗ[R] N) (m : M) :
rw [Matrix.zero_empty]
#align exterior_algebra.lift_alternating_ι ExteriorAlgebra.liftAlternating_ι

theorem liftAlternating_ι_mul (f : ∀ i, M [Λ^Fin i]→ₗ[R] N) (m : M)
theorem liftAlternating_ι_mul (f : ∀ i, M [^Fin i]→ₗ[R] N) (m : M)
(x : ExteriorAlgebra R M) :
liftAlternating (R := R) (M := M) (N := N) f (ι R m * x) =
liftAlternating (R := R) (M := M) (N := N) (fun i => (f i.succ).curryLeft m) x := by
Expand All @@ -88,21 +88,21 @@ theorem liftAlternating_ι_mul (f : ∀ i, M [Λ^Fin i]→ₗ[R] N) (m : M)
#align exterior_algebra.lift_alternating_ι_mul ExteriorAlgebra.liftAlternating_ι_mul

@[simp]
theorem liftAlternating_one (f : ∀ i, M [Λ^Fin i]→ₗ[R] N) :
theorem liftAlternating_one (f : ∀ i, M [^Fin i]→ₗ[R] N) :
liftAlternating (R := R) (M := M) (N := N) f (1 : ExteriorAlgebra R M) = f 0 0 := by
dsimp [liftAlternating]
rw [foldl_one]
#align exterior_algebra.lift_alternating_one ExteriorAlgebra.liftAlternating_one

@[simp]
theorem liftAlternating_algebraMap (f : ∀ i, M [Λ^Fin i]→ₗ[R] N) (r : R) :
theorem liftAlternating_algebraMap (f : ∀ i, M [^Fin i]→ₗ[R] N) (r : R) :
liftAlternating (R := R) (M := M) (N := N) f (algebraMap _ (ExteriorAlgebra R M) r) =
r • f 0 0 := by
rw [Algebra.algebraMap_eq_smul_one, map_smul, liftAlternating_one]
#align exterior_algebra.lift_alternating_algebra_map ExteriorAlgebra.liftAlternating_algebraMap

@[simp]
theorem liftAlternating_apply_ιMulti {n : ℕ} (f : ∀ i, M [Λ^Fin i]→ₗ[R] N)
theorem liftAlternating_apply_ιMulti {n : ℕ} (f : ∀ i, M [^Fin i]→ₗ[R] N)
(v : Fin n → M) : liftAlternating (R := R) (M := M) (N := N) f (ιMulti R n v) = f n v := by
rw [ιMulti_apply]
-- porting note: `v` is generalized automatically so it was removed from the next line
Expand All @@ -118,13 +118,13 @@ theorem liftAlternating_apply_ιMulti {n : ℕ} (f : ∀ i, M [Λ^Fin i]→ₗ[R
#align exterior_algebra.lift_alternating_apply_ι_multi ExteriorAlgebra.liftAlternating_apply_ιMulti

@[simp]
theorem liftAlternating_comp_ιMulti {n : ℕ} (f : ∀ i, M [Λ^Fin i]→ₗ[R] N) :
theorem liftAlternating_comp_ιMulti {n : ℕ} (f : ∀ i, M [^Fin i]→ₗ[R] N) :
(liftAlternating (R := R) (M := M) (N := N) f).compAlternatingMap (ιMulti R n) = f n :=
AlternatingMap.ext <| liftAlternating_apply_ιMulti f
#align exterior_algebra.lift_alternating_comp_ι_multi ExteriorAlgebra.liftAlternating_comp_ιMulti

@[simp]
theorem liftAlternating_comp (g : N →ₗ[R] N') (f : ∀ i, M [Λ^Fin i]→ₗ[R] N) :
theorem liftAlternating_comp (g : N →ₗ[R] N') (f : ∀ i, M [^Fin i]→ₗ[R] N) :
(liftAlternating (R := R) (M := M) (N := N') fun i => g.compAlternatingMap (f i)) =
g ∘ₗ liftAlternating (R := R) (M := M) (N := N) f := by
ext v
Expand Down Expand Up @@ -152,7 +152,7 @@ theorem liftAlternating_ιMulti :

/-- `ExteriorAlgebra.liftAlternating` is an equivalence. -/
@[simps apply symm_apply]
def liftAlternatingEquiv : (∀ i, M [Λ^Fin i]→ₗ[R] N) ≃ₗ[R] ExteriorAlgebra R M →ₗ[R] N
def liftAlternatingEquiv : (∀ i, M [^Fin i]→ₗ[R] N) ≃ₗ[R] ExteriorAlgebra R M →ₗ[R] N
where
toFun := liftAlternating (R := R)
map_add' := map_add _
Expand Down
14 changes: 7 additions & 7 deletions Mathlib/LinearAlgebra/Matrix/Determinant.lean
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ variable {R : Type v} [CommRing R]
local notation "ε " σ:arg => ((sign σ : ℤ) : R)

/-- `det` is an `AlternatingMap` in the rows of the matrix. -/
def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R :=
def detRowAlternating : (n → R) [^n]→ₗ[R] R :=
MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj)
#align matrix.det_row_alternating Matrix.detRowAlternating

Expand Down Expand Up @@ -91,7 +91,7 @@ theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by

-- @[simp] -- Porting note (#10618): simp can prove this
theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 :=
(detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero
(detRowAlternating : (n → R) [^n]→ₗ[R] R).map_zero
#align matrix.det_zero Matrix.det_zero

@[simp]
Expand Down Expand Up @@ -240,7 +240,7 @@ theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by
/-- Permuting the columns changes the sign of the determinant. -/
theorem det_permute (σ : Perm n) (M : Matrix n n R) :
(Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det :=
((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def])
((detRowAlternating : (n → R) [^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def])
#align matrix.det_permute Matrix.det_permute

/-- Permuting rows and columns with the same equivalence has no effect. -/
Expand Down Expand Up @@ -362,7 +362,7 @@ Prove that a matrix with a repeated column has determinant equal to zero.


theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 :=
(detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h)
(detRowAlternating : (n → R) [^n]→ₗ[R] R).map_coord_zero i (funext h)
#align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero

theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) :
Expand All @@ -375,7 +375,7 @@ variable {M : Matrix n n R} {i j : n}

/-- If a matrix has a repeated row, the determinant will be zero. -/
theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 :=
(detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j
(detRowAlternating : (n → R) [^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j
#align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq

/-- If a matrix has a repeated column, the determinant will be zero. -/
Expand All @@ -388,7 +388,7 @@ end DetZero

theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) :
det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) :=
(detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v
(detRowAlternating : (n → R) [^n]→ₗ[R] R).map_add M j u v
#align matrix.det_update_row_add Matrix.det_updateRow_add

theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) :
Expand All @@ -399,7 +399,7 @@ theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) :

theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) :
det (updateRow M j <| s • u) = s * det (updateRow M j u) :=
(detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u
(detRowAlternating : (n → R) [^n]→ₗ[R] R).map_smul M j s u
#align matrix.det_update_row_smul Matrix.det_updateRow_smul

theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) :
Expand Down
Loading

0 comments on commit 8bb63cc

Please sign in to comment.