Skip to content

Commit

Permalink
Trigger CI for leanprover/lean4#4433
Browse files Browse the repository at this point in the history
  • Loading branch information
leanprover-community-mathlib4-bot committed Jun 13, 2024
2 parents b301bd0 + c5ca3f9 commit fd0f828
Show file tree
Hide file tree
Showing 5 changed files with 88 additions and 61 deletions.
14 changes: 3 additions & 11 deletions Batteries/Data/Char.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jannis Limperg
-/
import Batteries.Data.UInt
import Batteries.Tactic.Alias

@[ext] theorem Char.ext : {a b : Char} → a.val = b.val → a = b
| ⟨_,_⟩, ⟨_,_⟩, rfl => rfl
Expand All @@ -21,16 +22,7 @@ instance : Batteries.LawfulOrd Char := .compareOfLessAndEq

namespace String

private theorem csize_eq (c) :
csize c = 1 ∨ csize c = 2 ∨ csize c = 3
csize c = 4 := by
simp only [csize, Char.utf8Size]
repeat (first | split | (solve | simp (config := {decide := true})))

theorem csize_pos (c) : 0 < csize c := by
rcases csize_eq c with _|_|_|_ <;> simp_all (config := {decide := true})

theorem csize_le_4 (c) : csize c ≤ 4 := by
rcases csize_eq c with _|_|_|_ <;> simp_all (config := {decide := true})
@[deprecated (since := "2024-06-11")] alias csize_pos := Char.utf8Size_pos
@[deprecated (since := "2024-06-11")] alias csize_le_4 := Char.utf8Size_le_four

end String
85 changes: 53 additions & 32 deletions Batteries/Data/HashMap/WF.lean
Original file line number Diff line number Diff line change
Expand Up @@ -23,22 +23,25 @@ theorem update_data (self : Buckets α β) (i d h) :
theorem exists_of_update (self : Buckets α β) (i d h) :
∃ l₁ l₂, self.1.data = l₁ ++ self.1[i] :: l₂ ∧ List.length l₁ = i.toNat ∧
(self.update i d h).1.data = l₁ ++ d :: l₂ := by
simp [Array.getElem_eq_data_get]; exact List.exists_of_set' h
simp only [Array.data_length, Array.ugetElem_eq_getElem, Array.getElem_eq_data_get]
exact List.exists_of_set' h

theorem update_update (self : Buckets α β) (i d d' h h') :
(self.update i d h).update i d' h' = self.update i d' h := by
simp [update]; congr 1; rw [Array.set_set]
simp only [update, Array.uset, Array.data_length]
congr 1
rw [Array.set_set]

theorem size_eq (data : Buckets α β) :
size data = .sum (data.1.data.map (·.toList.length)) := rfl

theorem mk_size (h) : (mk n h : Buckets α β).size = 0 := by
simp [Buckets.size_eq, Buckets.mk, mkArray]; clear h
simp only [mk, mkArray, size_eq]; clear h
induction n <;> simp [*]

theorem WF.mk' [BEq α] [Hashable α] (h) : (Buckets.mk n h : Buckets α β).WF := by
refine ⟨fun _ h => ?_, fun i h => ?_⟩
· simp [Buckets.mk, empty', mkArray, List.mem_replicate] at h
· simp only [Buckets.mk, mkArray, List.mem_replicate, ne_eq] at h
simp [h, List.Pairwise.nil]
· simp [Buckets.mk, empty', mkArray, Array.getElem_eq_data_get, AssocList.All]

Expand All @@ -53,16 +56,19 @@ theorem WF.update [BEq α] [Hashable α] {buckets : Buckets α β} {i d h} (H :
· exact match List.mem_or_eq_of_mem_set hl with
| .inl hl => H.1 _ hl
| .inr rfl => h₁ (H.1 _ (Array.getElem_mem_data ..))
· revert hp; simp [update_data, Array.getElem_eq_data_get, List.get_set]
· revert hp
simp only [Array.getElem_eq_data_get, update_data, List.get_set, Array.data_length, update_size]
split <;> intro hp
· next eq => exact eq ▸ h₂ (H.2 _ _) _ hp
· simp at hi; exact H.2 i hi _ hp
· simp only [update_size, Array.data_length] at hi
exact H.2 i hi _ hp

end Buckets

theorem reinsertAux_size [Hashable α] (data : Buckets α β) (a : α) (b : β) :
(reinsertAux data a b).size = data.size.succ := by
simp [Buckets.size_eq, reinsertAux]
simp only [reinsertAux, Array.data_length, Array.ugetElem_eq_getElem, Buckets.size_eq,
Nat.succ_eq_add_one]
refine have ⟨l₁, l₂, h₁, _, eq⟩ := Buckets.exists_of_update ..; eq ▸ ?_
simp [h₁, Nat.succ_add]; rfl

Expand All @@ -88,12 +94,13 @@ where
· next H =>
refine (go (i+1) _ _ fun j hj => ?a).trans ?b <;> simp
· case a =>
simp [List.getD_eq_get?, List.get?_set]; split
simp only [List.getD_eq_get?, List.get?_set, Option.map_eq_map]; split
· cases List.get? .. <;> rfl
· next H => exact hs _ (Nat.lt_of_le_of_ne (Nat.le_of_lt_succ hj) (Ne.symm H))
· case b =>
refine have ⟨l₁, l₂, h₁, _, eq⟩ := List.exists_of_set' H; eq ▸ ?_
simp [h₁, Buckets.size_eq]
simp only [Buckets.size_eq, h₁, List.map_append, List.map_cons, AssocList.toList,
List.length_nil, Nat.sum_append, Nat.sum_cons, Nat.zero_add, Array.data_length]
rw [Nat.add_assoc, Nat.add_assoc, Nat.add_assoc]; congr 1
(conv => rhs; rw [Nat.add_left_comm]); congr 1
rw [← Array.getElem_eq_data_get]
Expand All @@ -102,9 +109,10 @@ where
· next H =>
rw [(_ : Nat.sum _ = 0), Nat.zero_add]
rw [← (_ : source.data.map (fun _ => .nil) = source.data)]
· simp; induction source.data <;> simp [*]
· simp only [List.map_map]
induction source.data <;> simp [*]
refine List.ext_get (by simp) fun j h₁ h₂ => ?_
simp
simp only [List.get_map, Array.data_length]
have := (hs j (Nat.lt_of_lt_of_le h₂ (Nat.not_lt.1 H))).symm
rwa [List.getD_eq_get?, List.get?_eq_get, Option.getD_some] at this
termination_by source.size - i
Expand All @@ -126,7 +134,8 @@ theorem expand_WF.foldl [BEq α] [Hashable α] (rank : α → Nat) {l : List (α
refine ih hl₁.2 hl₂.2
(reinsertAux_WF ht₁ fun _ h => (ht₂ _ (Array.getElem_mem_data ..) _ h).2.1)
(fun _ h => ?_)
simp [reinsertAux, Buckets.update] at h
simp only [reinsertAux, Buckets.update, Array.uset, Array.data_length,
Array.ugetElem_eq_getElem, Array.data_set] at h
match List.mem_or_eq_of_mem_set h with
| .inl h =>
intro _ hf
Expand Down Expand Up @@ -157,7 +166,9 @@ where
· match List.mem_or_eq_of_mem_set hl with
| .inl hl => exact hs₁ _ hl
| .inr e => exact e ▸ .nil
· simp [Array.getElem_eq_data_get, List.get_set]; split
· simp only [Array.data_length, Array.size_set, Array.getElem_eq_data_get, Array.data_set,
List.get_set]
split
· nofun
· exact hs₂ _ (by simp_all)
· let rank (k : α) := ((hash k).toUSize % source.size).toNat
Expand All @@ -182,7 +193,7 @@ theorem insert_size [BEq α] [Hashable α] {m : Imp α β} {k v}
· unfold Buckets.size
refine have ⟨_, _, h₁, _, eq⟩ := Buckets.exists_of_update ..; eq ▸ ?_
simp [h, h₁, Buckets.size_eq, Nat.succ_add]; rfl
· rw [expand_size]; simp [h, expand, Buckets.size]
· rw [expand_size]; simp only [expand, h, Buckets.size, Array.data_length, Buckets.update_size]
refine have ⟨_, _, h₁, _, eq⟩ := Buckets.exists_of_update ..; eq ▸ ?_
simp [h₁, Buckets.size_eq, Nat.succ_add]; rfl

Expand All @@ -191,7 +202,8 @@ private theorem mem_replaceF {l : List (α × β)} {x : α × β} {p : α × β
induction l with
| nil => exact .inr
| cons a l ih =>
simp; generalize e : cond .. = z; revert e
simp only [List.replaceF, List.mem_cons]
generalize e : cond .. = z; revert e
unfold cond; split <;> (intro h; subst h; simp)
· intro
| .inl eq => exact eq ▸ .inl rfl
Expand All @@ -208,7 +220,7 @@ private theorem pairwise_replaceF [BEq α] [PartialEquivBEq α]
induction l with
| nil => simp [H]
| cons a l ih =>
simp at H ⊢
simp only [List.pairwise_cons, List.replaceF] at H ⊢
generalize e : cond .. = z; unfold cond at e; revert e
split <;> (intro h; subst h; simp)
· next e => exact ⟨(H.1 · · ∘ PartialEquivBEq.trans e), H.2
Expand All @@ -222,15 +234,17 @@ theorem insert_WF [BEq α] [Hashable α] {m : Imp α β} {k v}
(h : m.buckets.WF) : (insert m k v).buckets.WF := by
dsimp [insert, cond]; split
· next h₁ =>
simp at h₁; have ⟨x, hx₁, hx₂⟩ := h₁
simp only [AssocList.contains_eq, List.any_eq_true] at h₁; have ⟨x, hx₁, hx₂⟩ := h₁
refine h.update (fun H => ?_) (fun H a h => ?_)
· simp; exact pairwise_replaceF H
· simp [AssocList.All] at H h ⊢
· simp only [AssocList.toList_replace]
exact pairwise_replaceF H
· simp only [AssocList.All, Array.ugetElem_eq_getElem, AssocList.toList_replace] at H h ⊢
match mem_replaceF h with
| .inl rfl => rfl
| .inr h => exact H _ h
· next h₁ =>
rw [Bool.eq_false_iff] at h₁; simp at h₁
rw [Bool.eq_false_iff] at h₁
simp only [AssocList.contains_eq, ne_eq, List.any_eq_true, not_exists, not_and] at h₁
suffices _ by split <;> [exact this; refine expand_WF this]
refine h.update (.cons ?_) (fun H a h => ?_)
· exact fun a h h' => h₁ a h (PartialEquivBEq.symm h')
Expand All @@ -243,12 +257,13 @@ theorem erase_size [BEq α] [Hashable α] {m : Imp α β} {k}
(erase m k).size = (erase m k).buckets.size := by
dsimp [erase, cond]; split
· next H =>
simp [h, Buckets.size]
simp only [h, Buckets.size]
refine have ⟨_, _, h₁, _, eq⟩ := Buckets.exists_of_update ..; eq ▸ ?_
simp [h, h₁, Buckets.size_eq]
simp only [h₁, Array.data_length, Array.ugetElem_eq_getElem, List.map_append, List.map_cons,
Nat.sum_append, Nat.sum_cons, AssocList.toList_erase]
rw [(_ : List.length _ = _ + 1), Nat.add_right_comm]; {rfl}
clear h₁ eq
simp [AssocList.contains_eq] at H
simp only [AssocList.contains_eq, List.any_eq_true] at H
have ⟨a, h₁, h₂⟩ := H
refine have ⟨_, _, _, _, _, h, eq⟩ := List.exists_of_eraseP h₁ h₂; eq ▸ ?_
simp [h]; rfl
Expand All @@ -257,7 +272,7 @@ theorem erase_size [BEq α] [Hashable α] {m : Imp α β} {k}
theorem erase_WF [BEq α] [Hashable α] {m : Imp α β} {k}
(h : m.buckets.WF) : (erase m k).buckets.WF := by
dsimp [erase, cond]; split
· refine h.update (fun H => ?_) (fun H a h => ?_) <;> simp at h ⊢
· refine h.update (fun H => ?_) (fun H a h => ?_) <;> simp only [AssocList.toList_erase] at h ⊢
· exact H.sublist (List.eraseP_sublist _)
· exact H _ (List.mem_of_mem_eraseP h)
· exact h
Expand All @@ -266,7 +281,7 @@ theorem modify_size [BEq α] [Hashable α] {m : Imp α β} {k}
(h : m.size = m.buckets.size) :
(modify m k f).size = (modify m k f).buckets.size := by
dsimp [modify, cond]; rw [Buckets.update_update]
simp [h, Buckets.size]
simp only [h, Buckets.size]
refine have ⟨_, _, h₁, _, eq⟩ := Buckets.exists_of_update ..; eq ▸ ?_
simp [h, h₁, Buckets.size_eq]

Expand All @@ -275,7 +290,7 @@ theorem modify_WF [BEq α] [Hashable α] {m : Imp α β} {k}
dsimp [modify, cond]; rw [Buckets.update_update]
refine h.update (fun H => ?_) (fun H a h => ?_) <;> simp at h ⊢
· exact pairwise_replaceF H
· simp [AssocList.All] at H h ⊢
· simp only [AssocList.All, Array.ugetElem_eq_getElem] at H h ⊢
match mem_replaceF h with
| .inl rfl => rfl
| .inr h => exact H _ h
Expand All @@ -296,12 +311,13 @@ theorem WF_iff [BEq α] [Hashable α] {m : Imp α β} :
theorem WF.mapVal {α β γ} {f : α → β → γ} [BEq α] [Hashable α]
{m : Imp α β} (H : WF m) : WF (mapVal f m) := by
have ⟨h₁, h₂⟩ := H.out
simp [Imp.mapVal, Buckets.mapVal, WF_iff, h₁]; refine ⟨?_, ?_, fun i h => ?_⟩
· simp [Buckets.size]; congr; funext l; simp
simp only [Imp.mapVal, h₁, Buckets.mapVal, WF_iff]; refine ⟨?_, ?_, fun i h => ?_⟩
· simp only [Buckets.size, Array.map_data, List.map_map]; congr; funext l; simp
· simp only [Array.map_data, List.forall_mem_map_iff]
simp only [AssocList.toList_mapVal, List.pairwise_map]
exact fun _ => h₂.1 _
· simp [AssocList.All] at h ⊢
· simp only [Array.size_map, AssocList.All, Array.getElem_map, AssocList.toList_mapVal,
List.mem_map, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] at h ⊢
intro a m
apply h₂.2 _ _ _ m

Expand All @@ -313,7 +329,11 @@ theorem WF.filterMap {α β γ} {f : α → β → Option γ} [BEq α] [Hashable
induction l generalizing n acc with simp [filterMap.go, g₁, *]
| cons a b l => match f a b with
| none => rfl
| some c => simp; rw [Nat.add_right_comm]; rfl
| some c =>
simp only [Option.map_some', List.reverse_cons, List.append_assoc, List.singleton_append,
List.length_cons, Nat.succ_eq_add_one, Prod.mk.injEq, true_and]
rw [Nat.add_right_comm]
rfl
let g l := (g₁ l).reverse.toAssocList
let M := StateT (ULift Nat) Id
have H2 (l : List (AssocList α β)) n :
Expand All @@ -334,7 +354,7 @@ theorem WF.filterMap {α β γ} {f : α → β → Option γ} [BEq α] [Hashable
suffices ∀ bk sz (h : 0 < bk.length),
m.buckets.val.mapM (m := M) (filterMap.go f .nil) ⟨0⟩ = (⟨bk⟩, ⟨sz⟩) →
WF ⟨sz, ⟨bk⟩, h⟩ from this _ _ _ rfl
simp [Array.mapM_eq_mapM_data, bind, StateT.bind, H2, g]
simp only [Array.mapM_eq_mapM_data, bind, StateT.bind, H2, List.map_map, Nat.zero_add, g]
intro bk sz h e'; cases e'
refine .mk (by simp [Buckets.size]) ⟨?_, fun i h => ?_⟩
· simp only [List.forall_mem_map_iff, List.toList_toAssocList]
Expand All @@ -345,7 +365,8 @@ theorem WF.filterMap {α β γ} {f : α → β → Option γ} [BEq α] [Hashable
· simp only [Array.size_mk, List.length_map, Array.data_length, Array.getElem_eq_data_get,
List.get_map] at h ⊢
have := H.out.2.2 _ h
simp [AssocList.All, g₁] at this ⊢
simp only [AssocList.All, List.toList_toAssocList, List.mem_reverse, List.mem_filterMap,
Option.map_eq_some', forall_exists_index, and_imp, g₁] at this ⊢
rintro _ _ h' _ _ rfl
exact this _ h'

Expand Down
10 changes: 10 additions & 0 deletions Batteries/Data/RBMap/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -678,6 +678,16 @@ instance [Repr α] : Repr (RBSet α cmp) where
/-- `O(log n)`. Insert element `v` into the tree. -/
@[inline] def insert (t : RBSet α cmp) (v : α) : RBSet α cmp := ⟨t.1.insert cmp v, t.2.insert⟩

/--
Insert all elements from a collection into a `RBSet α cmp`.
-/
def insertMany [ForIn Id ρ α] (s : RBSet α cmp) (as : ρ) :
RBSet α cmp := Id.run do
let mut s := s
for a in as do
s := s.insert a
return s

/--
`O(log n)`. Remove an element from the tree using a cut function.
The `cut` function is used to locate an element in the tree:
Expand Down
Loading

0 comments on commit fd0f828

Please sign in to comment.