Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(sdk)!: move v2 to main namespace #7376

Merged
merged 2 commits into from
Mar 4, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions backend/src/v2/compiler/testdata/component_used_twice.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from kfp.v2 import dsl
from kfp.v2 import components
from kfp import dsl
from kfp import components


@components.create_component_from_func
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -104,8 +104,8 @@
"(python3 -m ensurepip || python3 -m ensurepip --user) && (PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location 'kfp==1.8.0' || PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location 'kfp==1.8.0' --user) && \"$0\" \"$@\"",
"sh",
"-ec",
"program_path=$(mktemp -d)\nprintf \"%s\" \"$0\" > \"$program_path/ephemeral_component.py\"\npython3 -m kfp.v2.components.executor_main --component_module_path \"$program_path/ephemeral_component.py\" \"$@\"\n",
"\nfrom kfp.v2.dsl import *\nfrom typing import *\n\ndef preprocess(\n # An input parameter of type string.\n message: str,\n # An input parameter of type dict.\n input_dict_parameter: Dict[str, int],\n # An input parameter of type list.\n input_list_parameter: List[str],\n # Use Output[T] to get a metadata-rich handle to the output artifact\n # of type `Dataset`.\n output_dataset_one: Output[Dataset],\n # A locally accessible filepath for another output artifact of type\n # `Dataset`.\n output_dataset_two_path: OutputPath('Dataset'),\n # A locally accessible filepath for an output parameter of type string.\n output_parameter_path: OutputPath(str),\n # A locally accessible filepath for an output parameter of type bool.\n output_bool_parameter_path: OutputPath(bool),\n # A locally accessible filepath for an output parameter of type dict.\n output_dict_parameter_path: OutputPath(Dict[str, int]),\n # A locally accessible filepath for an output parameter of type list.\n output_list_parameter_path: OutputPath(List[str]),\n):\n \"\"\"Dummy preprocessing step.\"\"\"\n\n # Use Dataset.path to access a local file path for writing.\n # One can also use Dataset.uri to access the actual URI file path.\n with open(output_dataset_one.path, 'w') as f:\n f.write(message)\n\n # OutputPath is used to just pass the local file path of the output artifact\n # to the function.\n with open(output_dataset_two_path, 'w') as f:\n f.write(message)\n\n with open(output_parameter_path, 'w') as f:\n f.write(message)\n\n with open(output_bool_parameter_path, 'w') as f:\n f.write(\n str(True)) # use either `str()` or `json.dumps()` for bool values.\n\n import json\n with open(output_dict_parameter_path, 'w') as f:\n f.write(json.dumps(input_dict_parameter))\n\n with open(output_list_parameter_path, 'w') as f:\n f.write(json.dumps(input_list_parameter))\n\n"
"program_path=$(mktemp -d)\nprintf \"%s\" \"$0\" > \"$program_path/ephemeral_component.py\"\npython3 -m kfp.components.executor_main --component_module_path \"$program_path/ephemeral_component.py\" \"$@\"\n",
"\nfrom kfp.dsl import *\nfrom typing import *\n\ndef preprocess(\n # An input parameter of type string.\n message: str,\n # An input parameter of type dict.\n input_dict_parameter: Dict[str, int],\n # An input parameter of type list.\n input_list_parameter: List[str],\n # Use Output[T] to get a metadata-rich handle to the output artifact\n # of type `Dataset`.\n output_dataset_one: Output[Dataset],\n # A locally accessible filepath for another output artifact of type\n # `Dataset`.\n output_dataset_two_path: OutputPath('Dataset'),\n # A locally accessible filepath for an output parameter of type string.\n output_parameter_path: OutputPath(str),\n # A locally accessible filepath for an output parameter of type bool.\n output_bool_parameter_path: OutputPath(bool),\n # A locally accessible filepath for an output parameter of type dict.\n output_dict_parameter_path: OutputPath(Dict[str, int]),\n # A locally accessible filepath for an output parameter of type list.\n output_list_parameter_path: OutputPath(List[str]),\n):\n \"\"\"Dummy preprocessing step.\"\"\"\n\n # Use Dataset.path to access a local file path for writing.\n # One can also use Dataset.uri to access the actual URI file path.\n with open(output_dataset_one.path, 'w') as f:\n f.write(message)\n\n # OutputPath is used to just pass the local file path of the output artifact\n # to the function.\n with open(output_dataset_two_path, 'w') as f:\n f.write(message)\n\n with open(output_parameter_path, 'w') as f:\n f.write(message)\n\n with open(output_bool_parameter_path, 'w') as f:\n f.write(\n str(True)) # use either `str()` or `json.dumps()` for bool values.\n\n import json\n with open(output_dict_parameter_path, 'w') as f:\n f.write(json.dumps(input_dict_parameter))\n\n with open(output_list_parameter_path, 'w') as f:\n f.write(json.dumps(input_list_parameter))\n\n"
],
"image": "python:3.7"
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -107,8 +107,8 @@
"\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip || python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location 'kfp==1.8.9' && \"$0\" \"$@\"\n",
"sh",
"-ec",
"program_path=$(mktemp -d)\nprintf \"%s\" \"$0\" > \"$program_path/ephemeral_component.py\"\npython3 -m kfp.v2.components.executor_main --component_module_path \"$program_path/ephemeral_component.py\" \"$@\"\n",
"\nimport kfp\nfrom kfp.v2 import dsl\nfrom kfp.v2.dsl import *\nfrom typing import *\n\ndef preprocess(\n # An input parameter of type string.\n message: str,\n # An input parameter of type dict.\n input_dict_parameter: Dict[str, int],\n # An input parameter of type list.\n input_list_parameter: List[str],\n # Use Output[T] to get a metadata-rich handle to the output artifact\n # of type `Dataset`.\n output_dataset_one: Output[Dataset],\n # A locally accessible filepath for another output artifact of type\n # `Dataset`.\n output_dataset_two_path: OutputPath('Dataset'),\n # A locally accessible filepath for an output parameter of type string.\n output_parameter_path: OutputPath(str),\n # A locally accessible filepath for an output parameter of type bool.\n output_bool_parameter_path: OutputPath(bool),\n # A locally accessible filepath for an output parameter of type dict.\n output_dict_parameter_path: OutputPath(Dict[str, int]),\n # A locally accessible filepath for an output parameter of type list.\n output_list_parameter_path: OutputPath(List[str]),\n):\n \"\"\"Dummy preprocessing step.\"\"\"\n\n # Use Dataset.path to access a local file path for writing.\n # One can also use Dataset.uri to access the actual URI file path.\n with open(output_dataset_one.path, 'w') as f:\n f.write(message)\n\n # OutputPath is used to just pass the local file path of the output artifact\n # to the function.\n with open(output_dataset_two_path, 'w') as f:\n f.write(message)\n\n with open(output_parameter_path, 'w') as f:\n f.write(message)\n\n with open(output_bool_parameter_path, 'w') as f:\n f.write(\n str(True)) # use either `str()` or `json.dumps()` for bool values.\n\n import json\n with open(output_dict_parameter_path, 'w') as f:\n f.write(json.dumps(input_dict_parameter))\n\n with open(output_list_parameter_path, 'w') as f:\n f.write(json.dumps(input_list_parameter))\n\n"
"program_path=$(mktemp -d)\nprintf \"%s\" \"$0\" > \"$program_path/ephemeral_component.py\"\npython3 -m kfp.components.executor_main --component_module_path \"$program_path/ephemeral_component.py\" \"$@\"\n",
"\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import *\n\ndef preprocess(\n # An input parameter of type string.\n message: str,\n # An input parameter of type dict.\n input_dict_parameter: Dict[str, int],\n # An input parameter of type list.\n input_list_parameter: List[str],\n # Use Output[T] to get a metadata-rich handle to the output artifact\n # of type `Dataset`.\n output_dataset_one: Output[Dataset],\n # A locally accessible filepath for another output artifact of type\n # `Dataset`.\n output_dataset_two_path: OutputPath('Dataset'),\n # A locally accessible filepath for an output parameter of type string.\n output_parameter_path: OutputPath(str),\n # A locally accessible filepath for an output parameter of type bool.\n output_bool_parameter_path: OutputPath(bool),\n # A locally accessible filepath for an output parameter of type dict.\n output_dict_parameter_path: OutputPath(Dict[str, int]),\n # A locally accessible filepath for an output parameter of type list.\n output_list_parameter_path: OutputPath(List[str]),\n):\n \"\"\"Dummy preprocessing step.\"\"\"\n\n # Use Dataset.path to access a local file path for writing.\n # One can also use Dataset.uri to access the actual URI file path.\n with open(output_dataset_one.path, 'w') as f:\n f.write(message)\n\n # OutputPath is used to just pass the local file path of the output artifact\n # to the function.\n with open(output_dataset_two_path, 'w') as f:\n f.write(message)\n\n with open(output_parameter_path, 'w') as f:\n f.write(message)\n\n with open(output_bool_parameter_path, 'w') as f:\n f.write(\n str(True)) # use either `str()` or `json.dumps()` for bool values.\n\n import json\n with open(output_dict_parameter_path, 'w') as f:\n f.write(json.dumps(input_dict_parameter))\n\n with open(output_list_parameter_path, 'w') as f:\n f.write(json.dumps(input_list_parameter))\n\n"
],
"image": "python:3.7"
}
Expand All @@ -127,8 +127,8 @@
"\nif ! [ -x \"$(command -v pip)\" ]; then\n python3 -m ensurepip || python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location 'kfp==1.8.9' && \"$0\" \"$@\"\n",
"sh",
"-ec",
"program_path=$(mktemp -d)\nprintf \"%s\" \"$0\" > \"$program_path/ephemeral_component.py\"\npython3 -m kfp.v2.components.executor_main --component_module_path \"$program_path/ephemeral_component.py\" \"$@\"\n",
"\nimport kfp\nfrom kfp.v2 import dsl\nfrom kfp.v2.dsl import *\nfrom typing import *\n\ndef train(\n # Use InputPath to get a locally accessible path for the input artifact\n # of type `Dataset`.\n dataset_one_path: InputPath('Dataset'),\n # Use Input[T] to get a metadata-rich handle to the input artifact\n # of type `Dataset`.\n dataset_two: Input[Dataset],\n # An input parameter of type string.\n message: str,\n # Use Output[T] to get a metadata-rich handle to the output artifact\n # of type `Dataset`.\n model: Output[Model],\n # An input parameter of type bool.\n input_bool: bool,\n # An input parameter of type dict.\n input_dict: Dict[str, int],\n # An input parameter of type List[str].\n input_list: List[str],\n # An input parameter of type int with a default value.\n num_steps: int = 100,\n):\n \"\"\"Dummy Training step.\"\"\"\n with open(dataset_one_path, 'r') as input_file:\n dataset_one_contents = input_file.read()\n\n with open(dataset_two.path, 'r') as input_file:\n dataset_two_contents = input_file.read()\n\n line = (f'dataset_one_contents: {dataset_one_contents} || '\n f'dataset_two_contents: {dataset_two_contents} || '\n f'message: {message} || '\n f'input_bool: {input_bool}, type {type(input_bool)} || '\n f'input_dict: {input_dict}, type {type(input_dict)} || '\n f'input_list: {input_list}, type {type(input_list)} \\n')\n\n with open(model.path, 'w') as output_file:\n for i in range(num_steps):\n output_file.write('Step {}\\n{}\\n=====\\n'.format(i, line))\n\n # model is an instance of Model artifact, which has a .metadata dictionary\n # to store arbitrary metadata for the output artifact.\n model.metadata['accuracy'] = 0.9\n\n"
"program_path=$(mktemp -d)\nprintf \"%s\" \"$0\" > \"$program_path/ephemeral_component.py\"\npython3 -m kfp.components.executor_main --component_module_path \"$program_path/ephemeral_component.py\" \"$@\"\n",
"\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import *\n\ndef train(\n # Use InputPath to get a locally accessible path for the input artifact\n # of type `Dataset`.\n dataset_one_path: InputPath('Dataset'),\n # Use Input[T] to get a metadata-rich handle to the input artifact\n # of type `Dataset`.\n dataset_two: Input[Dataset],\n # An input parameter of type string.\n message: str,\n # Use Output[T] to get a metadata-rich handle to the output artifact\n # of type `Dataset`.\n model: Output[Model],\n # An input parameter of type bool.\n input_bool: bool,\n # An input parameter of type dict.\n input_dict: Dict[str, int],\n # An input parameter of type List[str].\n input_list: List[str],\n # An input parameter of type int with a default value.\n num_steps: int = 100,\n):\n \"\"\"Dummy Training step.\"\"\"\n with open(dataset_one_path, 'r') as input_file:\n dataset_one_contents = input_file.read()\n\n with open(dataset_two.path, 'r') as input_file:\n dataset_two_contents = input_file.read()\n\n line = (f'dataset_one_contents: {dataset_one_contents} || '\n f'dataset_two_contents: {dataset_two_contents} || '\n f'message: {message} || '\n f'input_bool: {input_bool}, type {type(input_bool)} || '\n f'input_dict: {input_dict}, type {type(input_dict)} || '\n f'input_list: {input_list}, type {type(input_list)} \\n')\n\n with open(model.path, 'w') as output_file:\n for i in range(num_steps):\n output_file.write('Step {}\\n{}\\n=====\\n'.format(i, line))\n\n # model is an instance of Model artifact, which has a .metadata dictionary\n # to store arbitrary metadata for the output artifact.\n model.metadata['accuracy'] = 0.9\n\n"
],
"image": "python:3.7"
}
Expand Down
Loading