forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Zstd negative level #7
Closed
Closed
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
The firmware for the Lenovo Thinkpad X13s has been submitted, accepted and merged upstream, so update to the correct path. Signed-off-by: Steev Klimaszewski <[email protected]> Reviewed-by: Andrew Halaney <[email protected]> Signed-off-by: Bjorn Andersson <[email protected]> Link: https://lore.kernel.org/r/[email protected]
Move the USB-controller wakeup-source property to the dwc3 glue node to match the updated binding. Signed-off-by: Johan Hovold <[email protected]> Reviewed-by: Matthias Kaehlcke <[email protected]> Signed-off-by: Bjorn Andersson <[email protected]> Link: https://lore.kernel.org/r/[email protected]
Update the email address for Bjorn's maintainer entries and fill in .mailmap accordingly. Signed-off-by: Bjorn Andersson <[email protected]> Signed-off-by: Bjorn Andersson <[email protected]> Link: https://lore.kernel.org/r/[email protected]
On i.MX7/iMX8MM/iMX8MQ, the initialized default value of PERST bit(BIT3) of SRC_PCIEPHY_RCR is 1b'1. But i.MX8MP has one inversed default value 1b'0 of PERST bit. And the PERST bit should be kept 1b'1 after power and clocks are stable. So fix the i.MX8MP PCIe PHY PERST support here. Fixes: e08672c ("reset: imx7: Add support for i.MX8MP SoC") Signed-off-by: Richard Zhu <[email protected]> Reviewed-by: Philipp Zabel <[email protected]> Tested-by: Marek Vasut <[email protected]> Tested-by: Richard Leitner <[email protected]> Tested-by: Alexander Stein <[email protected]> Signed-off-by: Philipp Zabel <[email protected]> Link: https://lore.kernel.org/r/[email protected]
Originally this was used in by the switch core driver to issue a reset. But it turns out, this isn't just a switch core reset but instead it will reset almost the complete SoC. Instead of adding almost all devices of the SoC a shared reset line, issue the reset once early on startup. Keep the reset controller for backwards compatibility, but make the actual reset a noop. Suggested-by: Philipp Zabel <[email protected]> Signed-off-by: Michael Walle <[email protected]> Tested-by: Steen Hegelund <[email protected]> on Sparx5 Signed-off-by: Philipp Zabel <[email protected]> Link: https://lore.kernel.org/r/[email protected]
The Quanta 0408:4034 camera implements UVC 1.5, and thus sets bInterfaceProtocol to UVC_PC_PROTOCOL_15. Commit 95f03d9 ("media: uvcvideo: Limit power line control for Quanta cameras") added a quirk for the device that incorrectly specified the UVC 1.0 protocol, rendering the quirk inoperative. Fix it. Link: https://lore.kernel.org/linux-media/[email protected] Fixes: 95f03d9 ("media: uvcvideo: Limit power line control for Quanta cameras") Reviewed-by: Laurent Pinchart <[email protected]> Signed-off-by: Ricardo Ribalda <[email protected]> Signed-off-by: Mauro Carvalho Chehab <[email protected]>
Add model numbers for client and mobile parts. Signed-off-by: Tony Luck <[email protected]> Signed-off-by: Dave Hansen <[email protected]> Link: https://lkml.kernel.org/r/[email protected]
Access to registers is guarded by ingenic_tcu_{enable,disable}_regs() so the stop bit can be cleared before accessing a timer channel, but those functions did not clear the stop bit on SoCs with a global TCU clock gate. Testing on the X1000 has revealed that the stop bits must be cleared _and_ the global TCU clock must be ungated to access timer registers. This appears to be the norm on Ingenic SoCs, and is specified in the documentation for the X1000 and numerous JZ47xx SoCs. If the stop bit isn't cleared, register writes don't take effect and the system can be left in a broken state, eg. the watchdog timer may not run. The bug probably went unnoticed because stop bits are zeroed when the SoC is reset, and the kernel does not set them unless a timer gets disabled at runtime. However, it is possible that a bootloader or a previous kernel (if using kexec) leaves the stop bits set and we should not rely on them being cleared. Fixing this is easy: have ingenic_tcu_{enable,disable}_regs() always clear the stop bit, regardless of the presence of a global TCU gate. Reviewed-by: Paul Cercueil <[email protected]> Tested-by: Paul Cercueil <[email protected]> Fixes: 4f89e4b ("clk: ingenic: Add driver for the TCU clocks") Cc: [email protected] Signed-off-by: Aidan MacDonald <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Stephen Boyd <[email protected]>
For some Alder Lake N machine, the below unchecked MSR access error may be triggered. [ 0.088017] rcu: Hierarchical SRCU implementation. [ 0.088017] unchecked MSR access error: WRMSR to 0x38f (tried to write 0x0001000f0000003f) at rIP: 0xffffffffb5684de8 (native_write_msr+0x8/0x30) [ 0.088017] Call Trace: [ 0.088017] <TASK> [ 0.088017] __intel_pmu_enable_all.constprop.46+0x4a/0xa0 The Alder Lake N only has e-cores. The X86_FEATURE_HYBRID_CPU flag is not set. The perf cannot retrieve the correct CPU type via get_this_hybrid_cpu_type(). The model specific get_hybrid_cpu_type() is hardcode to p-core. The wrong CPU type is given to the PMU of the Alder Lake N. Since Alder Lake N isn't in fact a hybrid CPU, remove ALDERLAKE_N from the rest of {ALDER,RAPTOP}LAKE and create a non-hybrid PMU setup. The differences between Gracemont and the previous Tremont are, - Number of GP counters - Load and store latency Events - PEBS event_constraints - Instruction Latency support - Data source encoding - Memory access latency encoding Fixes: c2a960f ("perf/x86: Add new Alder Lake and Raptor Lake support") Reported-by: Jianfeng Gao <[email protected]> Suggested-by: Peter Zijlstra (Intel) <[email protected]> Signed-off-by: Kan Liang <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Link: https://lkml.kernel.org/r/[email protected]
When a guest PEBS counter is cross-mapped by a host counter, software will remove the corresponding bit in the arr[global_ctrl].guest and expect hardware to perform a change of state "from enable to disable" via the msr_slot[] switch during the vmx transaction. The real world is that if user adjust the counter overflow value small enough, it still opens a tiny race window for the previously PEBS-enabled counter to write cross-mapped PEBS records into the guest's PEBS buffer, when arr[global_ctrl].guest has been prioritised (switch_msr_special stuff) to switch into the enabled state, while the arr[pebs_enable].guest has not. Close this window by clearing invalid bits in the arr[global_ctrl].guest. Fixes: 8542503 ("KVM: x86/pmu: Disable guest PEBS temporarily in two rare situations") Signed-off-by: Like Xu <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Link: https://lkml.kernel.org/r/[email protected]
Commit bcbb63b ("ARM: dts: dra7: Separate AM57 dtsi files") disabled usb4_tm for am5748 devices since USB4 IP is not present in this SoC. The commit log explained the difference between AM5 and DRA7 families: AM5 and DRA7 SoC families have different set of modules in them so the SoC sepecific dtsi files need to be separated. e.g. Some of the major differences between AM576 and DRA76 DRA76x AM576x USB3 x USB4 x ATL x VCP x MLB x ISS x PRU-ICSS1 x PRU-ICSS2 x Then commit 176f26b ("ARM: dts: Add support for dra762 abz package") removed usb4_tm part from am5748.dtsi and introcuded new ti-sysc errors in dmesg: ti-sysc 48940000.target-module: clock get error for fck: -2 ti-sysc: probe of 48940000.target-module failed with error -2 Fixes: 176f26b ("ARM: dts: Add support for dra762 abz package") Signed-off-by: Romain Naour <[email protected]> Signed-off-by: Romain Naour <[email protected]> Message-Id: <[email protected]> Reviewed-by: Roger Quadros <[email protected]> Signed-off-by: Tony Lindgren <[email protected]>
perf_output_read_group may respond to IPI request of other cores and invoke __perf_install_in_context function. As a result, hwc configuration is modified. causing inconsistency and unexpected consequences. Interrupts are not disabled when perf_output_read_group reads PMU counter. In this case, IPI request may be received from other cores. As a result, PMU configuration is modified and an error occurs when reading PMU counter: CPU0 CPU1 __se_sys_perf_event_open perf_install_in_context perf_output_read_group smp_call_function_single for_each_sibling_event(sub, leader) { generic_exec_single if ((sub != event) && remote_function (sub->state == PERF_EVENT_STATE_ACTIVE)) | <enter IPI handler: __perf_install_in_context> <----RAISE IPI-----+ __perf_install_in_context ctx_resched event_sched_out armpmu_del ... hwc->idx = -1; // event->hwc.idx is set to -1 ... <exit IPI> sub->pmu->read(sub); armpmu_read armv8pmu_read_counter armv8pmu_read_hw_counter int idx = event->hw.idx; // idx = -1 u64 val = armv8pmu_read_evcntr(idx); u32 counter = ARMV8_IDX_TO_COUNTER(idx); // invalid counter = 30 read_pmevcntrn(counter) // undefined instruction Signed-off-by: Yang Jihong <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Link: https://lkml.kernel.org/r/[email protected]
sunxi_sram_claim() checks the sram_desc->claimed flag before updating the register, with the intent that only one device can claim a region. However, this was ineffective because the flag was never set. Fixes: 4af34b5 ("drivers: soc: sunxi: Introduce SoC driver to map SRAMs") Reviewed-by: Jernej Skrabec <[email protected]> Signed-off-by: Samuel Holland <[email protected]> Reviewed-by: Heiko Stuebner <[email protected]> Tested-by: Heiko Stuebner <[email protected]> Signed-off-by: Jernej Skrabec <[email protected]> Link: https://lore.kernel.org/r/[email protected]
This driver exports a regmap tied to the platform device (as opposed to a syscon, which exports a regmap tied to the OF node). Because of this, the driver can never be unbound, as that would destroy the regmap. Use builtin_platform_driver_probe() to enforce this limitation. Fixes: 5828729 ("soc: sunxi: export a regmap for EMAC clock reg on A64") Reviewed-by: Jernej Skrabec <[email protected]> Signed-off-by: Samuel Holland <[email protected]> Reviewed-by: Heiko Stuebner <[email protected]> Tested-by: Heiko Stuebner <[email protected]> Signed-off-by: Jernej Skrabec <[email protected]> Link: https://lore.kernel.org/r/[email protected]
…ksgxd Unsanitized pages trigger WARN_ON() unconditionally, which can panic the whole computer, if /proc/sys/kernel/panic_on_warn is set. In sgx_init(), if misc_register() fails or misc_register() succeeds but neither sgx_drv_init() nor sgx_vepc_init() succeeds, then ksgxd will be prematurely stopped. This may leave unsanitized pages, which will result a false warning. Refine __sgx_sanitize_pages() to return: 1. Zero when the sanitization process is complete or ksgxd has been requested to stop. 2. The number of unsanitized pages otherwise. Fixes: 51ab30e ("x86/sgx: Replace section->init_laundry_list with sgx_dirty_page_list") Reported-by: Paul Menzel <[email protected]> Signed-off-by: Jarkko Sakkinen <[email protected]> Signed-off-by: Dave Hansen <[email protected]> Reviewed-by: Reinette Chatre <[email protected]> Cc: [email protected] Link: https://lore.kernel.org/linux-sgx/[email protected]/T/#u Link: https://lkml.kernel.org/r/[email protected]
Errors from debugfs are intended to be non-fatal, and should not prevent the driver from probing. Since debugfs file creation is treated as infallible, move it below the parts of the probe function that can fail. This prevents an error elsewhere in the probe function from causing the file to leak. Do the same for the call to of_platform_populate(). Finally, checkpatch suggests an octal literal for the file permissions. Fixes: 4af34b5 ("drivers: soc: sunxi: Introduce SoC driver to map SRAMs") Fixes: 5828729 ("soc: sunxi: export a regmap for EMAC clock reg on A64") Reviewed-by: Jernej Skrabec <[email protected]> Signed-off-by: Samuel Holland <[email protected]> Tested-by: Heiko Stuebner <[email protected]> Signed-off-by: Jernej Skrabec <[email protected]> Link: https://lore.kernel.org/r/[email protected]
VM_FAULT_NOPAGE is expected behaviour for -EBUSY failure path, when augmenting a page, as this means that the reclaimer thread has been triggered, and the intention is just to round-trip in ring-3, and retry with a new page fault. Fixes: 5a90d2c ("x86/sgx: Support adding of pages to an initialized enclave") Signed-off-by: Haitao Huang <[email protected]> Signed-off-by: Jarkko Sakkinen <[email protected]> Signed-off-by: Dave Hansen <[email protected]> Reviewed-by: Reinette Chatre <[email protected]> Tested-by: Vijay Dhanraj <[email protected]> Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected]
The labels were backward with respect to the register values. The SRAM is mapped to the CPU when the register value is 1. Fixes: 5e4fb64 ("drivers: soc: sunxi: add support for A64 and its SRAM C") Acked-by: Jernej Skrabec <[email protected]> Signed-off-by: Samuel Holland <[email protected]> Signed-off-by: Jernej Skrabec <[email protected]> Link: https://lore.kernel.org/r/[email protected]
Syzkaller reported BUG_ON as follows: ------------[ cut here ]------------ kernel BUG at fs/ntfs/dir.c:86! invalid opcode: 0000 [kdave#1] PREEMPT SMP KASAN PTI CPU: 3 PID: 758 Comm: a.out Not tainted 5.19.0-next-20220808 kdave#5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:ntfs_lookup_inode_by_name+0xd11/0x2d10 Code: ff e9 b9 01 00 00 e8 1e fe d6 fe 48 8b 7d 98 49 8d 5d 07 e8 91 85 29 ff 48 c7 45 98 00 00 00 00 e9 5a fb ff ff e8 ff fd d6 fe <0f> 0b e8 f8 fd d6 fe 0f 0b e8 f1 fd d6 fe 48 8b b5 50 ff ff ff 4c RSP: 0018:ffff888079607978 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000008000 RCX: 0000000000000000 RDX: ffff88807cf10000 RSI: ffffffff82a4a081 RDI: 0000000000000003 RBP: ffff888079607a70 R08: 0000000000000001 R09: ffff88807a6d01d7 R10: ffffed100f4da03a R11: 0000000000000000 R12: ffff88800f0fb110 R13: ffff88800f0ee000 R14: ffff88800f0fb000 R15: 0000000000000001 FS: 00007f33b63c7540(0000) GS:ffff888108580000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f33b635c090 CR3: 000000000f39e005 CR4: 0000000000770ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> load_system_files+0x1f7f/0x3620 ntfs_fill_super+0xa01/0x1be0 mount_bdev+0x36a/0x440 ntfs_mount+0x3a/0x50 legacy_get_tree+0xfb/0x210 vfs_get_tree+0x8f/0x2f0 do_new_mount+0x30a/0x760 path_mount+0x4de/0x1880 __x64_sys_mount+0x2b3/0x340 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f33b62ff9ea Code: 48 8b 0d a9 f4 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 76 f4 0b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffd0c471aa8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f33b62ff9ea RDX: 0000000020000000 RSI: 0000000020000100 RDI: 00007ffd0c471be0 RBP: 00007ffd0c471c60 R08: 00007ffd0c471ae0 R09: 00007ffd0c471c24 R10: 0000000000000000 R11: 0000000000000202 R12: 000055bac5afc160 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- Fix this by adding sanity check on extended system files' directory inode to ensure that it is directory, just like ntfs_extend_init() when mounting ntfs3. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: ChenXiaoSong <[email protected]> Cc: Anton Altaparmakov <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
…e allocation Patrick Daly reported the following problem; NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation [0] - ZONE_MOVABLE [1] - ZONE_NORMAL [2] - NULL For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent memory_offline operation removes the last page from ZONE_MOVABLE, build_all_zonelists() & build_zonerefs_node() will update node_zonelists as shown below. Only populated zones are added. NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation [0] - ZONE_NORMAL [1] - NULL [2] - NULL The race is simple -- page allocation could be in progress when a memory hot-remove operation triggers a zonelist rebuild that removes zones. The allocation request will still have a valid ac->preferred_zoneref that is now pointing to NULL and triggers an OOM kill. This problem probably always existed but may be slightly easier to trigger due to 6aa303d ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator") which distinguishes between zones that are completely unpopulated versus zones that have valid pages not managed by the buddy allocator (e.g. reserved, memblock, ballooning etc). Memory hotplug had multiple stages with timing considerations around managed/present page updates, the zonelist rebuild and the zone span updates. As David Hildenbrand puts it memory offlining adjusts managed+present pages of the zone essentially in one go. If after the adjustments, the zone is no longer populated (present==0), we rebuild the zone lists. Once that's done, we try shrinking the zone (start+spanned pages) -- which results in zone_start_pfn == 0 if there are no more pages. That happens *after* rebuilding the zonelists via remove_pfn_range_from_zone(). The only requirement to fix the race is that a page allocation request identifies when a zonelist rebuild has happened since the allocation request started and no page has yet been allocated. Use a seqlock_t to track zonelist updates with a lockless read-side of the zonelist and protecting the rebuild and update of the counter with a spinlock. [[email protected]: make zonelist_update_seq static] Link: https://lkml.kernel.org/r/[email protected] Fixes: 6aa303d ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator") Signed-off-by: Mel Gorman <[email protected]> Reported-by: Patrick Daly <[email protected]> Acked-by: Michal Hocko <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Cc: <[email protected]> [4.9+] Signed-off-by: Andrew Morton <[email protected]>
Patch series "mm, xfs, dax: Fixes for memory_failure() handling". I failed to run the memory error injection section of the ndctl test suite on linux-next prior to the merge window and as a result some bugs were missed. While the new enabling targeted reflink enabled XFS filesystems the bugs cropped up in the surrounding cases of DAX error injection on ext4-fsdax and device-dax. One new assumption / clarification in this set is the notion that if a filesystem's ->notify_failure() handler returns -EOPNOTSUPP, then it must be the case that the fsdax usage of page->index and page->mapping are valid. I am fairly certain this is true for xfs_dax_notify_failure(), but would appreciate another set of eyes. This patch (of 4): XFS always registers dax_holder_operations regardless of whether the filesystem is capable of handling the notifications. The expectation is that if the notify_failure handler cannot run then there are no scenarios where it needs to run. In other words the expected semantic is that page->index and page->mapping are valid for memory_failure() when the conditions that cause -EOPNOTSUPP in xfs_dax_notify_failure() are present. A fallback to the generic memory_failure() path is expected so do not warn when that happens. Link: https://lkml.kernel.org/r/166153426798.2758201.15108211981034512993.stgit@dwillia2-xfh.jf.intel.com Link: https://lkml.kernel.org/r/166153427440.2758201.6709480562966161512.stgit@dwillia2-xfh.jf.intel.com Fixes: 6f643c5 ("xfs: implement ->notify_failure() for XFS") Signed-off-by: Dan Williams <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Cc: Shiyang Ruan <[email protected]> Cc: Darrick J. Wong <[email protected]> Cc: Al Viro <[email protected]> Cc: Dave Chinner <[email protected]> Cc: Goldwyn Rodrigues <[email protected]> Cc: Jane Chu <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Miaohe Lin <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Ritesh Harjani <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
The SB_BORN flag is stored in the vfs superblock, not xfs_sb. Link: https://lkml.kernel.org/r/166153428094.2758201.7936572520826540019.stgit@dwillia2-xfh.jf.intel.com Fixes: 6f643c5 ("xfs: implement ->notify_failure() for XFS") Signed-off-by: Dan Williams <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Cc: Shiyang Ruan <[email protected]> Cc: Darrick J. Wong <[email protected]> Cc: Al Viro <[email protected]> Cc: Dave Chinner <[email protected]> Cc: Goldwyn Rodrigues <[email protected]> Cc: Jane Chu <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Miaohe Lin <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Ritesh Harjani <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
Some pagemap types, like MEMORY_DEVICE_GENERIC (device-dax) do not even have pagemap ops which results in crash signatures like this: BUG: kernel NULL pointer dereference, address: 0000000000000010 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 8000000205073067 P4D 8000000205073067 PUD 2062b3067 PMD 0 Oops: 0000 [kdave#1] PREEMPT SMP PTI CPU: 22 PID: 4535 Comm: device-dax Tainted: G OE N 6.0.0-rc2+ torvalds#59 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:memory_failure+0x667/0xba0 [..] Call Trace: <TASK> ? _printk+0x58/0x73 do_madvise.part.0.cold+0xaf/0xc5 Check for ops before checking if the ops have a memory_failure() handler. Link: https://lkml.kernel.org/r/166153428781.2758201.1990616683438224741.stgit@dwillia2-xfh.jf.intel.com Fixes: 33a8f7f ("pagemap,pmem: introduce ->memory_failure()") Signed-off-by: Dan Williams <[email protected]> Acked-by: Naoya Horiguchi <[email protected]> Reviewed-by: Miaohe Lin <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Cc: Shiyang Ruan <[email protected]> Cc: Darrick J. Wong <[email protected]> Cc: Al Viro <[email protected]> Cc: Dave Chinner <[email protected]> Cc: Goldwyn Rodrigues <[email protected]> Cc: Jane Chu <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Ritesh Harjani <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
… fails In the case where a filesystem is polled to take over the memory failure and receives -EOPNOTSUPP it indicates that page->index and page->mapping are valid for reverse mapping the failure address. Introduce FSDAX_INVALID_PGOFF to distinguish when add_to_kill() is being called from mf_dax_kill_procs() by a filesytem vs the typical memory_failure() path. Otherwise, vma_pgoff_address() is called with an invalid fsdax_pgoff which then trips this failing signature: kernel BUG at mm/memory-failure.c:319! invalid opcode: 0000 [kdave#1] PREEMPT SMP PTI CPU: 13 PID: 1262 Comm: dax-pmd Tainted: G OE N 6.0.0-rc2+ torvalds#62 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:add_to_kill.cold+0x19d/0x209 [..] Call Trace: <TASK> collect_procs.part.0+0x2c4/0x460 memory_failure+0x71b/0xba0 ? _printk+0x58/0x73 do_madvise.part.0.cold+0xaf/0xc5 Link: https://lkml.kernel.org/r/166153429427.2758201.14605968329933175594.stgit@dwillia2-xfh.jf.intel.com Fixes: c36e202 ("mm: introduce mf_dax_kill_procs() for fsdax case") Signed-off-by: Dan Williams <[email protected]> Acked-by: Naoya Horiguchi <[email protected]> Reviewed-by: Miaohe Lin <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Cc: Shiyang Ruan <[email protected]> Cc: Darrick J. Wong <[email protected]> Cc: Al Viro <[email protected]> Cc: Dave Chinner <[email protected]> Cc: Goldwyn Rodrigues <[email protected]> Cc: Jane Chu <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Ritesh Harjani <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
Commit 4867fbb ("x86/mm: move protection_map[] inside the platform") moved accesses to protection_map[] from mem_encrypt_amd.c to pgprot.c. As a result, the accesses are now targets of KASAN (and other instrumentations), leading to the crash during the boot process. Disable the instrumentations for pgprot.c like commit 67bb8e9 ("x86/mm: Disable various instrumentations of mm/mem_encrypt.c and mm/tlb.c"). Before this patch, my AMD machine cannot boot since v6.0-rc1 with KASAN enabled, without anything printed. After the change, it successfully boots up. Fixes: 4867fbb ("x86/mm: move protection_map[] inside the platform") Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Naohiro Aota <[email protected]> Cc: Anshuman Khandual <[email protected]> Cc: Andy Lutomirski <[email protected]> Cc: Borislav Petkov <[email protected]> Cc: Dave Hansen <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
When clearing a PTE the TLB should be flushed whilst still holding the PTL to avoid a potential race with madvise/munmap/etc. For example consider the following sequence: CPU0 CPU1 ---- ---- migrate_vma_collect_pmd() pte_unmap_unlock() madvise(MADV_DONTNEED) -> zap_pte_range() pte_offset_map_lock() [ PTE not present, TLB not flushed ] pte_unmap_unlock() [ page is still accessible via stale TLB ] flush_tlb_range() In this case the page may still be accessed via the stale TLB entry after madvise returns. Fix this by flushing the TLB while holding the PTL. Fixes: 8c3328f ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Link: https://lkml.kernel.org/r/9f801e9d8d830408f2ca27821f606e09aa856899.1662078528.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <[email protected]> Reported-by: Nadav Amit <[email protected]> Reviewed-by: "Huang, Ying" <[email protected]> Acked-by: David Hildenbrand <[email protected]> Acked-by: Peter Xu <[email protected]> Cc: Alex Sierra <[email protected]> Cc: Ben Skeggs <[email protected]> Cc: Felix Kuehling <[email protected]> Cc: huang ying <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: John Hubbard <[email protected]> Cc: Karol Herbst <[email protected]> Cc: Logan Gunthorpe <[email protected]> Cc: Lyude Paul <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Ralph Campbell <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
Currently we only call flush_cache_page() for the anon_exclusive case, however in both cases we clear the pte so should flush the cache. Link: https://lkml.kernel.org/r/5676f30436ab71d1a587ac73f835ed8bd2113ff5.1662078528.git-series.apopple@nvidia.com Fixes: 8c3328f ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Signed-off-by: Alistair Popple <[email protected]> Reviewed-by: David Hildenbrand <[email protected]> Acked-by: Peter Xu <[email protected]> Cc: Alex Sierra <[email protected]> Cc: Ben Skeggs <[email protected]> Cc: Felix Kuehling <[email protected]> Cc: huang ying <[email protected]> Cc: "Huang, Ying" <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: John Hubbard <[email protected]> Cc: Karol Herbst <[email protected]> Cc: Logan Gunthorpe <[email protected]> Cc: Lyude Paul <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Nadav Amit <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Ralph Campbell <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
migrate_vma_setup() has a fast path in migrate_vma_collect_pmd() that installs migration entries directly if it can lock the migrating page. When removing a dirty pte the dirty bit is supposed to be carried over to the underlying page to prevent it being lost. Currently migrate_vma_*() can only be used for private anonymous mappings. That means loss of the dirty bit usually doesn't result in data loss because these pages are typically not file-backed. However pages may be backed by swap storage which can result in data loss if an attempt is made to migrate a dirty page that doesn't yet have the PageDirty flag set. In this case migration will fail due to unexpected references but the dirty pte bit will be lost. If the page is subsequently reclaimed data won't be written back to swap storage as it is considered uptodate, resulting in data loss if the page is subsequently accessed. Prevent this by copying the dirty bit to the page when removing the pte to match what try_to_migrate_one() does. Link: https://lkml.kernel.org/r/dd48e4882ce859c295c1a77612f66d198b0403f9.1662078528.git-series.apopple@nvidia.com Fixes: 8c3328f ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Signed-off-by: Alistair Popple <[email protected]> Acked-by: Peter Xu <[email protected]> Reviewed-by: "Huang, Ying" <[email protected]> Reported-by: "Huang, Ying" <[email protected]> Acked-by: David Hildenbrand <[email protected]> Cc: Alex Sierra <[email protected]> Cc: Ben Skeggs <[email protected]> Cc: Felix Kuehling <[email protected]> Cc: huang ying <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: John Hubbard <[email protected]> Cc: Karol Herbst <[email protected]> Cc: Logan Gunthorpe <[email protected]> Cc: Lyude Paul <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Nadav Amit <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Ralph Campbell <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. Fix this up by properly calling dput(). Link: https://lkml.kernel.org/r/[email protected] Fixes: 75c1c2b ("mm/damon/dbgfs: support multiple contexts") Signed-off-by: Greg Kroah-Hartman <[email protected]> Signed-off-by: SeongJae Park <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Jan 12, 2024
An issue occurred while reading an ELF file in libbpf.c during fuzzing: Program received signal SIGSEGV, Segmentation fault. 0x0000000000958e97 in bpf_object.collect_prog_relos () at libbpf.c:4206 4206 in libbpf.c (gdb) bt #0 0x0000000000958e97 in bpf_object.collect_prog_relos () at libbpf.c:4206 #1 0x000000000094f9d6 in bpf_object.collect_relos () at libbpf.c:6706 #2 0x000000000092bef3 in bpf_object_open () at libbpf.c:7437 #3 0x000000000092c046 in bpf_object.open_mem () at libbpf.c:7497 #4 0x0000000000924afa in LLVMFuzzerTestOneInput () at fuzz/bpf-object-fuzzer.c:16 #5 0x000000000060be11 in testblitz_engine::fuzzer::Fuzzer::run_one () #6 0x000000000087ad92 in tracing::span::Span::in_scope () #7 0x00000000006078aa in testblitz_engine::fuzzer::util::walkdir () #8 0x00000000005f3217 in testblitz_engine::entrypoint::main::{{closure}} () #9 0x00000000005f2601 in main () (gdb) scn_data was null at this code(tools/lib/bpf/src/libbpf.c): if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { The scn_data is derived from the code above: scn = elf_sec_by_idx(obj, sec_idx); scn_data = elf_sec_data(obj, scn); relo_sec_name = elf_sec_str(obj, shdr->sh_name); sec_name = elf_sec_name(obj, scn); if (!relo_sec_name || !sec_name)// don't check whether scn_data is NULL return -EINVAL; In certain special scenarios, such as reading a malformed ELF file, it is possible that scn_data may be a null pointer Signed-off-by: Mingyi Zhang <[email protected]> Signed-off-by: Xin Liu <[email protected]> Signed-off-by: Changye Wu <[email protected]> Signed-off-by: Andrii Nakryiko <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
kdave
pushed a commit
that referenced
this pull request
Jan 12, 2024
Wen Gu says: ==================== net/smc: implement SMCv2.1 virtual ISM device support The fourth edition of SMCv2 adds the SMC version 2.1 feature updates for SMC-Dv2 with virtual ISM. Virtual ISM are created and supported mainly by OS or hypervisor software, comparable to IBM ISM which is based on platform firmware or hardware. With the introduction of virtual ISM, SMCv2.1 makes some updates: - Introduce feature bitmask to indicate supplemental features. - Reserve a range of CHIDs for virtual ISM. - Support extended GIDs (128 bits) in CLC handshake. So this patch set aims to implement these updates in Linux kernel. And it acts as the first part of SMC-D virtual ISM extension & loopback-ism [1]. [1] https://lore.kernel.org/netdev/[email protected]/ v8->v7: - Patch #7: v7 mistakenly changed the type of gid_ext in smc_clc_msg_accept_confirm to u64 instead of __be64 as previous versions when fixing the rebase conflicts. So fix this mistake. v7->v6: Link: https://lore.kernel.org/netdev/[email protected]/ - Collect the Reviewed-by tag in v6; - Patch #3: redefine the struct smc_clc_msg_accept_confirm; - Patch #7: Because that the Patch #3 already adds '__packed' to smc_clc_msg_accept_confirm, so Patch #7 doesn't need to do the same thing. But this is a minor change, so I kept the 'Reviewed-by' tag. Other changes in previous versions but not yet acked: - Patch #1: Some minor changes in subject and fix the format issue (length exceeds 80 columns) compared to v3. - Patch #5: removes useless ini->feature_mask assignment in __smc_connect() and smc_listen_v2_check() compared to v4. - Patch #8: new added, compared to v3. v6->v5: Link: https://lore.kernel.org/netdev/[email protected]/ - Add 'Reviewed-by' label given in the previous versions: * Patch #4, #6, #9, #10 have nothing changed since v3; - Patch #2: * fix the format issue (Alignment should match open parenthesis) compared to v5; * remove useless clc->hdr.length assignment in smcr_clc_prep_confirm_accept() compared to v5; - Patch #3: new added compared to v5. - Patch #7: some minor changes like aclc_v2->aclc or clc_v2->clc compared to v5 due to the introduction of Patch #3. Since there were no major changes, I kept the 'Reviewed-by' label. Other changes in previous versions but not yet acked: - Patch #1: Some minor changes in subject and fix the format issue (length exceeds 80 columns) compared to v3. - Patch #5: removes useless ini->feature_mask assignment in __smc_connect() and smc_listen_v2_check() compared to v4. - Patch #8: new added, compared to v3. v5->v4: Link: https://lore.kernel.org/netdev/[email protected]/ - Patch #6: improve the comment of SMCD_CLC_MAX_V2_GID_ENTRIES; - Patch #4: remove useless ini->feature_mask assignment; v4->v3: https://lore.kernel.org/netdev/[email protected]/ - Patch #6: use SMCD_CLC_MAX_V2_GID_ENTRIES to indicate the max gid entries in CLC proposal and using SMC_MAX_V2_ISM_DEVS to indicate the max devices to propose; - Patch #6: use i and i+1 in smc_find_ism_v2_device_serv(); - Patch #2: replace the large if-else block in smc_clc_send_confirm_accept() with 2 subfunctions; - Fix missing byte order conversion of GID and token in CLC handshake, which is in a separate patch sending to net: https://lore.kernel.org/netdev/[email protected]/ - Patch #7: add extended GID in SMC-D lgr netlink attribute; v3->v2: https://lore.kernel.org/netdev/[email protected]/ - Rename smc_clc_fill_fce as smc_clc_fill_fce_v2x; - Remove ISM_IDENT_MASK from drivers/s390/net/ism.h; - Add explicitly assigning 'false' to ism_v2_capable in ism_dev_init(); - Remove smc_ism_set_v2_capable() helper for now, and introduce it in later loopback-ism implementation; v2->v1: - Fix sparse complaint; - Rebase to the latest net-next; ==================== Signed-off-by: David S. Miller <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Mar 15, 2024
Parallel testing appears to show a race between allocating and setting evsel ids. As there is a bounds check on the xyarray it yields a segv like: ``` AddressSanitizer:DEADLYSIGNAL ================================================================= ==484408==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000010 ==484408==The signal is caused by a WRITE memory access. ==484408==Hint: address points to the zero page. #0 0x55cef5d4eff4 in perf_evlist__id_hash tools/lib/perf/evlist.c:256 #1 0x55cef5d4f132 in perf_evlist__id_add tools/lib/perf/evlist.c:274 #2 0x55cef5d4f545 in perf_evlist__id_add_fd tools/lib/perf/evlist.c:315 #3 0x55cef5a1923f in store_evsel_ids util/evsel.c:3130 #4 0x55cef5a19400 in evsel__store_ids util/evsel.c:3147 #5 0x55cef5888204 in __run_perf_stat tools/perf/builtin-stat.c:832 #6 0x55cef5888c06 in run_perf_stat tools/perf/builtin-stat.c:960 #7 0x55cef58932db in cmd_stat tools/perf/builtin-stat.c:2878 ... ``` Avoid this crash by early exiting the perf_evlist__id_add_fd and perf_evlist__id_add is the access is out-of-bounds. Signed-off-by: Ian Rogers <[email protected]> Cc: Yang Jihong <[email protected]> Signed-off-by: Namhyung Kim <[email protected]> Link: https://lore.kernel.org/r/[email protected]
kdave
pushed a commit
that referenced
this pull request
Apr 2, 2024
The driver creates /sys/kernel/debug/dri/0/mob_ttm even when the corresponding ttm_resource_manager is not allocated. This leads to a crash when trying to read from this file. Add a check to create mob_ttm, system_mob_ttm, and gmr_ttm debug file only when the corresponding ttm_resource_manager is allocated. crash> bt PID: 3133409 TASK: ffff8fe4834a5000 CPU: 3 COMMAND: "grep" #0 [ffffb954506b3b20] machine_kexec at ffffffffb2a6bec3 #1 [ffffb954506b3b78] __crash_kexec at ffffffffb2bb598a #2 [ffffb954506b3c38] crash_kexec at ffffffffb2bb68c1 #3 [ffffb954506b3c50] oops_end at ffffffffb2a2a9b1 #4 [ffffb954506b3c70] no_context at ffffffffb2a7e913 #5 [ffffb954506b3cc8] __bad_area_nosemaphore at ffffffffb2a7ec8c #6 [ffffb954506b3d10] do_page_fault at ffffffffb2a7f887 #7 [ffffb954506b3d40] page_fault at ffffffffb360116e [exception RIP: ttm_resource_manager_debug+0x11] RIP: ffffffffc04afd11 RSP: ffffb954506b3df0 RFLAGS: 00010246 RAX: ffff8fe41a6d1200 RBX: 0000000000000000 RCX: 0000000000000940 RDX: 0000000000000000 RSI: ffffffffc04b4338 RDI: 0000000000000000 RBP: ffffb954506b3e08 R8: ffff8fee3ffad000 R9: 0000000000000000 R10: ffff8fe41a76a000 R11: 0000000000000001 R12: 00000000ffffffff R13: 0000000000000001 R14: ffff8fe5bb6f3900 R15: ffff8fe41a6d1200 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #8 [ffffb954506b3e00] ttm_resource_manager_show at ffffffffc04afde7 [ttm] #9 [ffffb954506b3e30] seq_read at ffffffffb2d8f9f3 RIP: 00007f4c4eda8985 RSP: 00007ffdbba9e9f8 RFLAGS: 00000246 RAX: ffffffffffffffda RBX: 000000000037e000 RCX: 00007f4c4eda8985 RDX: 000000000037e000 RSI: 00007f4c41573000 RDI: 0000000000000003 RBP: 000000000037e000 R8: 0000000000000000 R9: 000000000037fe30 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f4c41573000 R13: 0000000000000003 R14: 00007f4c41572010 R15: 0000000000000003 ORIG_RAX: 0000000000000000 CS: 0033 SS: 002b Signed-off-by: Jocelyn Falempe <[email protected]> Fixes: af4a25b ("drm/vmwgfx: Add debugfs entries for various ttm resource managers") Cc: <[email protected]> Reviewed-by: Zack Rusin <[email protected]> Link: https://patchwork.freedesktop.org/patch/msgid/[email protected]
kdave
pushed a commit
that referenced
this pull request
Apr 12, 2024
At current x1e80100 interface table, interface #3 is wrongly connected to DP controller #0 and interface #4 wrongly connected to DP controller #2. Fix this problem by connect Interface #3 to DP controller #0 and interface #4 connect to DP controller #1. Also add interface #6, #7 and #8 connections to DP controller to complete x1e80100 interface table. Changs in V3: -- add v2 changes log Changs in V2: -- add x1e80100 to subject -- add Fixes Fixes: e3b1f36 ("drm/msm/dpu: Add X1E80100 support") Signed-off-by: Kuogee Hsieh <[email protected]> Reviewed-by: Abhinav Kumar <[email protected]> Reviewed-by: Abel Vesa <[email protected]> Patchwork: https://patchwork.freedesktop.org/patch/585549/ Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Abhinav Kumar <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Apr 19, 2024
…git/netfilter/nf netfilter pull request 24-04-11 Pablo Neira Ayuso says: ==================== Netfilter fixes for net The following patchset contains Netfilter fixes for net: Patches #1 and #2 add missing rcu read side lock when iterating over expression and object type list which could race with module removal. Patch #3 prevents promisc packet from visiting the bridge/input hook to amend a recent fix to address conntrack confirmation race in br_netfilter and nf_conntrack_bridge. Patch #4 adds and uses iterate decorator type to fetch the current pipapo set backend datastructure view when netlink dumps the set elements. Patch #5 fixes removal of duplicate elements in the pipapo set backend. Patch #6 flowtable validates pppoe header before accessing it. Patch #7 fixes flowtable datapath for pppoe packets, otherwise lookup fails and pppoe packets follow classic path. ==================== Signed-off-by: David S. Miller <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Apr 19, 2024
vhost_worker will call tun call backs to receive packets. If too many illegal packets arrives, tun_do_read will keep dumping packet contents. When console is enabled, it will costs much more cpu time to dump packet and soft lockup will be detected. net_ratelimit mechanism can be used to limit the dumping rate. PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980" #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253 #1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3 #2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e #3 [fffffe00003fced0] do_nmi at ffffffff8922660d #4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663 [exception RIP: io_serial_in+20] RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002 RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000 RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0 RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020 R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #5 [ffffa655314979e8] io_serial_in at ffffffff89792594 #6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470 #7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6 #8 [ffffa65531497a20] uart_console_write at ffffffff8978b605 #9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558 #10 [ffffa65531497ac8] console_unlock at ffffffff89316124 torvalds#11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07 torvalds#12 [ffffa65531497b68] printk at ffffffff89318306 torvalds#13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765 torvalds#14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun] torvalds#15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun] torvalds#16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net] torvalds#17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost] torvalds#18 [ffffa65531497f10] kthread at ffffffff892d2e72 torvalds#19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f Fixes: ef3db4a ("tun: avoid BUG, dump packet on GSO errors") Signed-off-by: Lei Chen <[email protected]> Reviewed-by: Willem de Bruijn <[email protected]> Acked-by: Jason Wang <[email protected]> Reviewed-by: Eric Dumazet <[email protected]> Acked-by: Michael S. Tsirkin <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
kdave
pushed a commit
that referenced
this pull request
May 17, 2024
This registers a breakpoint handler for the new breakpoint type (0x03) inserted by LLVM CLANG for CFI breakpoints. If we are in permissive mode, just print a backtrace and continue. Example with CONFIG_CFI_PERMISSIVE enabled: > echo CFI_FORWARD_PROTO > /sys/kernel/debug/provoke-crash/DIRECT lkdtm: Performing direct entry CFI_FORWARD_PROTO lkdtm: Calling matched prototype ... lkdtm: Calling mismatched prototype ... CFI failure at lkdtm_indirect_call+0x40/0x4c (target: 0x0; expected type: 0x00000000) WARNING: CPU: 1 PID: 112 at lkdtm_indirect_call+0x40/0x4c CPU: 1 PID: 112 Comm: sh Not tainted 6.8.0-rc1+ torvalds#150 Hardware name: ARM-Versatile Express (...) lkdtm: FAIL: survived mismatched prototype function call! lkdtm: Unexpected! This kernel (6.8.0-rc1+ armv7l) was built with CONFIG_CFI_CLANG=y As you can see the LKDTM test fails, but I expect that this would be expected behaviour in the permissive mode. We are currently not implementing target and type for the CFI breakpoint as this requires additional operand bundling compiler extensions. CPUs without breakpoint support cannot handle breakpoints naturally, in these cases the permissive mode will not work, CFI will fall over on an undefined instruction: Internal error: Oops - undefined instruction: 0 [#1] PREEMPT ARM CPU: 0 PID: 186 Comm: ash Tainted: G W 6.9.0-rc1+ #7 Hardware name: Gemini (Device Tree) PC is at lkdtm_indirect_call+0x38/0x4c LR is at lkdtm_CFI_FORWARD_PROTO+0x30/0x6c This is reasonable I think: it's the best CFI can do to ascertain the the control flow is not broken on these CPUs. Reviewed-by: Kees Cook <[email protected]> Tested-by: Kees Cook <[email protected]> Reviewed-by: Sami Tolvanen <[email protected]> Signed-off-by: Linus Walleij <[email protected]> Signed-off-by: Russell King (Oracle) <[email protected]>
kdave
pushed a commit
that referenced
this pull request
May 22, 2024
The session has a header in it which contains a perf env with bpf_progs. The bpf_progs are accessed by the sideband thread and so the sideband thread must be stopped before the session is deleted, to avoid a use after free. This error was detected by AddressSanitizer in the following: ==2054673==ERROR: AddressSanitizer: heap-use-after-free on address 0x61d000161e00 at pc 0x55769289de54 bp 0x7f9df36d4ab0 sp 0x7f9df36d4aa8 READ of size 8 at 0x61d000161e00 thread T1 #0 0x55769289de53 in __perf_env__insert_bpf_prog_info util/env.c:42 #1 0x55769289dbb1 in perf_env__insert_bpf_prog_info util/env.c:29 #2 0x557692bbae29 in perf_env__add_bpf_info util/bpf-event.c:483 #3 0x557692bbb01a in bpf_event__sb_cb util/bpf-event.c:512 #4 0x5576928b75f4 in perf_evlist__poll_thread util/sideband_evlist.c:68 #5 0x7f9df96a63eb in start_thread nptl/pthread_create.c:444 #6 0x7f9df9726a4b in clone3 ../sysdeps/unix/sysv/linux/x86_64/clone3.S:81 0x61d000161e00 is located 384 bytes inside of 2136-byte region [0x61d000161c80,0x61d0001624d8) freed by thread T0 here: #0 0x7f9dfa6d7288 in __interceptor_free libsanitizer/asan/asan_malloc_linux.cpp:52 #1 0x557692978d50 in perf_session__delete util/session.c:319 #2 0x557692673959 in __cmd_record tools/perf/builtin-record.c:2884 #3 0x55769267a9f0 in cmd_record tools/perf/builtin-record.c:4259 #4 0x55769286710c in run_builtin tools/perf/perf.c:349 #5 0x557692867678 in handle_internal_command tools/perf/perf.c:402 #6 0x557692867a40 in run_argv tools/perf/perf.c:446 #7 0x557692867fae in main tools/perf/perf.c:562 #8 0x7f9df96456c9 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 Fixes: 657ee55 ("perf evlist: Introduce side band thread") Signed-off-by: Ian Rogers <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Athira Rajeev <[email protected]> Cc: Christian Brauner <[email protected]> Cc: Disha Goel <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: James Clark <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Kajol Jain <[email protected]> Cc: Kan Liang <[email protected]> Cc: K Prateek Nayak <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Song Liu <[email protected]> Cc: Tim Chen <[email protected]> Cc: Yicong Yang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
kdave
pushed a commit
that referenced
this pull request
May 22, 2024
ui_browser__show() is capturing the input title that is stack allocated memory in hist_browser__run(). Avoid a use after return by strdup-ing the string. Committer notes: Further explanation from Ian Rogers: My command line using tui is: $ sudo bash -c 'rm /tmp/asan.log*; export ASAN_OPTIONS="log_path=/tmp/asan.log"; /tmp/perf/perf mem record -a sleep 1; /tmp/perf/perf mem report' I then go to the perf annotate view and quit. This triggers the asan error (from the log file): ``` ==1254591==ERROR: AddressSanitizer: stack-use-after-return on address 0x7f2813331920 at pc 0x7f28180 65991 bp 0x7fff0a21c750 sp 0x7fff0a21bf10 READ of size 80 at 0x7f2813331920 thread T0 #0 0x7f2818065990 in __interceptor_strlen ../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:461 #1 0x7f2817698251 in SLsmg_write_wrapped_string (/lib/x86_64-linux-gnu/libslang.so.2+0x98251) #2 0x7f28176984b9 in SLsmg_write_nstring (/lib/x86_64-linux-gnu/libslang.so.2+0x984b9) #3 0x55c94045b365 in ui_browser__write_nstring ui/browser.c:60 #4 0x55c94045c558 in __ui_browser__show_title ui/browser.c:266 #5 0x55c94045c776 in ui_browser__show ui/browser.c:288 #6 0x55c94045c06d in ui_browser__handle_resize ui/browser.c:206 #7 0x55c94047979b in do_annotate ui/browsers/hists.c:2458 #8 0x55c94047fb17 in evsel__hists_browse ui/browsers/hists.c:3412 #9 0x55c940480a0c in perf_evsel_menu__run ui/browsers/hists.c:3527 #10 0x55c940481108 in __evlist__tui_browse_hists ui/browsers/hists.c:3613 torvalds#11 0x55c9404813f7 in evlist__tui_browse_hists ui/browsers/hists.c:3661 torvalds#12 0x55c93ffa253f in report__browse_hists tools/perf/builtin-report.c:671 torvalds#13 0x55c93ffa58ca in __cmd_report tools/perf/builtin-report.c:1141 torvalds#14 0x55c93ffaf159 in cmd_report tools/perf/builtin-report.c:1805 torvalds#15 0x55c94000c05c in report_events tools/perf/builtin-mem.c:374 torvalds#16 0x55c94000d96d in cmd_mem tools/perf/builtin-mem.c:516 torvalds#17 0x55c9400e44ee in run_builtin tools/perf/perf.c:350 torvalds#18 0x55c9400e4a5a in handle_internal_command tools/perf/perf.c:403 torvalds#19 0x55c9400e4e22 in run_argv tools/perf/perf.c:447 torvalds#20 0x55c9400e53ad in main tools/perf/perf.c:561 torvalds#21 0x7f28170456c9 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 torvalds#22 0x7f2817045784 in __libc_start_main_impl ../csu/libc-start.c:360 torvalds#23 0x55c93ff544c0 in _start (/tmp/perf/perf+0x19a4c0) (BuildId: 84899b0e8c7d3a3eaa67b2eb35e3d8b2f8cd4c93) Address 0x7f2813331920 is located in stack of thread T0 at offset 32 in frame #0 0x55c94046e85e in hist_browser__run ui/browsers/hists.c:746 This frame has 1 object(s): [32, 192) 'title' (line 747) <== Memory access at offset 32 is inside this variable HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork ``` hist_browser__run isn't on the stack so the asan error looks legit. There's no clean init/exit on struct ui_browser so I may be trading a use-after-return for a memory leak, but that seems look a good trade anyway. Fixes: 05e8b08 ("perf ui browser: Stop using 'self'") Signed-off-by: Ian Rogers <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Athira Rajeev <[email protected]> Cc: Ben Gainey <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: James Clark <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Kajol Jain <[email protected]> Cc: Kan Liang <[email protected]> Cc: K Prateek Nayak <[email protected]> Cc: Li Dong <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Oliver Upton <[email protected]> Cc: Paran Lee <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Ravi Bangoria <[email protected]> Cc: Sun Haiyong <[email protected]> Cc: Tim Chen <[email protected]> Cc: Yanteng Si <[email protected]> Cc: Yicong Yang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
kdave
pushed a commit
that referenced
this pull request
May 28, 2024
We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) torvalds#11 __do_sys_fdatasync (fs/sync.c:225:9) torvalds#12 __se_sys_fdatasync (fs/sync.c:223:1) torvalds#13 __x64_sys_fdatasync (fs/sync.c:223:1) torvalds#14 do_syscall_x64 (arch/x86/entry/common.c:52:14) torvalds#15 do_syscall_64 (arch/x86/entry/common.c:83:7) torvalds#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of the filesystem tree at the time of the crash: >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0)) >>> print_extent_buffer(nodes[0]) leaf 30425088 level 0 items 184 generation 9 owner 5 leaf 30425088 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da ... item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160 generation 7 transid 7 size 4096 nbytes 12288 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 6 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417703.220000000 (2024-05-22 15:41:43) mtime 1716417703.220000000 (2024-05-22 15:41:43) otime 1716417703.220000000 (2024-05-22 15:41:43) item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13 index 195 namelen 3 name: 193 item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 8192 ram 12288 extent compression 0 (none) item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 Item 5 in the log tree corresponds to item 183 in the filesystem tree, but nothing matches item 4. Furthermore, item 183 is the last item in the leaf. btrfs_log_prealloc_extents() is responsible for logging prealloc extents beyond i_size. It first truncates any previously logged prealloc extents that start beyond i_size. Then, it walks the filesystem tree and copies the prealloc extent items to the log tree. If it hits the end of a leaf, then it calls btrfs_next_leaf(), which unlocks the tree and does another search. However, while the filesystem tree is unlocked, an ordered extent completion may modify the tree. In particular, it may insert an extent item that overlaps with an extent item that was already copied to the log tree. This may manifest in several ways depending on the exact scenario, including an EEXIST error that is silently translated to a full sync, overlapping items in the log tree, or this crash. This particular crash is triggered by the following sequence of events: - Initially, the file has i_size=4k, a regular extent from 0-4k, and a prealloc extent beyond i_size from 4k-12k. The prealloc extent item is the last item in its B-tree leaf. - The file is fsync'd, which copies its inode item and both extent items to the log tree. - An xattr is set on the file, which sets the BTRFS_INODE_COPY_EVERYTHING flag. - The range 4k-8k in the file is written using direct I/O. i_size is extended to 8k, but the ordered extent is still in flight. - The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this calls copy_inode_items_to_log(), which calls btrfs_log_prealloc_extents(). - btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the filesystem tree. Since it starts before i_size, it skips it. Since it is the last item in its B-tree leaf, it calls btrfs_next_leaf(). - btrfs_next_leaf() unlocks the path. - The ordered extent completion runs, which converts the 4k-8k part of the prealloc extent to written and inserts the remaining prealloc part from 8k-12k. - btrfs_next_leaf() does a search and finds the new prealloc extent 8k-12k. - btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into the log tree. Note that it overlaps with the 4k-12k prealloc extent that was copied to the log tree by the first fsync. - fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k extent that was written. - This tries to drop the range 4k-8k in the log tree, which requires adjusting the start of the 4k-12k prealloc extent in the log tree to 8k. - btrfs_set_item_key_safe() sees that there is already an extent starting at 8k in the log tree and calls BUG(). Fix this by detecting when we're about to insert an overlapping file extent item in the log tree and truncating the part that would overlap. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Omar Sandoval <[email protected]> Signed-off-by: David Sterba <[email protected]>
kdave
pushed a commit
that referenced
this pull request
May 28, 2024
We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) torvalds#11 __do_sys_fdatasync (fs/sync.c:225:9) torvalds#12 __se_sys_fdatasync (fs/sync.c:223:1) torvalds#13 __x64_sys_fdatasync (fs/sync.c:223:1) torvalds#14 do_syscall_x64 (arch/x86/entry/common.c:52:14) torvalds#15 do_syscall_64 (arch/x86/entry/common.c:83:7) torvalds#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of the filesystem tree at the time of the crash: >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0)) >>> print_extent_buffer(nodes[0]) leaf 30425088 level 0 items 184 generation 9 owner 5 leaf 30425088 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da ... item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160 generation 7 transid 7 size 4096 nbytes 12288 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 6 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417703.220000000 (2024-05-22 15:41:43) mtime 1716417703.220000000 (2024-05-22 15:41:43) otime 1716417703.220000000 (2024-05-22 15:41:43) item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13 index 195 namelen 3 name: 193 item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 8192 ram 12288 extent compression 0 (none) item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 Item 5 in the log tree corresponds to item 183 in the filesystem tree, but nothing matches item 4. Furthermore, item 183 is the last item in the leaf. btrfs_log_prealloc_extents() is responsible for logging prealloc extents beyond i_size. It first truncates any previously logged prealloc extents that start beyond i_size. Then, it walks the filesystem tree and copies the prealloc extent items to the log tree. If it hits the end of a leaf, then it calls btrfs_next_leaf(), which unlocks the tree and does another search. However, while the filesystem tree is unlocked, an ordered extent completion may modify the tree. In particular, it may insert an extent item that overlaps with an extent item that was already copied to the log tree. This may manifest in several ways depending on the exact scenario, including an EEXIST error that is silently translated to a full sync, overlapping items in the log tree, or this crash. This particular crash is triggered by the following sequence of events: - Initially, the file has i_size=4k, a regular extent from 0-4k, and a prealloc extent beyond i_size from 4k-12k. The prealloc extent item is the last item in its B-tree leaf. - The file is fsync'd, which copies its inode item and both extent items to the log tree. - An xattr is set on the file, which sets the BTRFS_INODE_COPY_EVERYTHING flag. - The range 4k-8k in the file is written using direct I/O. i_size is extended to 8k, but the ordered extent is still in flight. - The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this calls copy_inode_items_to_log(), which calls btrfs_log_prealloc_extents(). - btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the filesystem tree. Since it starts before i_size, it skips it. Since it is the last item in its B-tree leaf, it calls btrfs_next_leaf(). - btrfs_next_leaf() unlocks the path. - The ordered extent completion runs, which converts the 4k-8k part of the prealloc extent to written and inserts the remaining prealloc part from 8k-12k. - btrfs_next_leaf() does a search and finds the new prealloc extent 8k-12k. - btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into the log tree. Note that it overlaps with the 4k-12k prealloc extent that was copied to the log tree by the first fsync. - fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k extent that was written. - This tries to drop the range 4k-8k in the log tree, which requires adjusting the start of the 4k-12k prealloc extent in the log tree to 8k. - btrfs_set_item_key_safe() sees that there is already an extent starting at 8k in the log tree and calls BUG(). Fix this by detecting when we're about to insert an overlapping file extent item in the log tree and truncating the part that would overlap. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Omar Sandoval <[email protected]> Signed-off-by: David Sterba <[email protected]>
kdave
pushed a commit
that referenced
this pull request
May 29, 2024
We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) torvalds#11 __do_sys_fdatasync (fs/sync.c:225:9) torvalds#12 __se_sys_fdatasync (fs/sync.c:223:1) torvalds#13 __x64_sys_fdatasync (fs/sync.c:223:1) torvalds#14 do_syscall_x64 (arch/x86/entry/common.c:52:14) torvalds#15 do_syscall_64 (arch/x86/entry/common.c:83:7) torvalds#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of the filesystem tree at the time of the crash: >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0)) >>> print_extent_buffer(nodes[0]) leaf 30425088 level 0 items 184 generation 9 owner 5 leaf 30425088 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da ... item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160 generation 7 transid 7 size 4096 nbytes 12288 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 6 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417703.220000000 (2024-05-22 15:41:43) mtime 1716417703.220000000 (2024-05-22 15:41:43) otime 1716417703.220000000 (2024-05-22 15:41:43) item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13 index 195 namelen 3 name: 193 item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 8192 ram 12288 extent compression 0 (none) item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 Item 5 in the log tree corresponds to item 183 in the filesystem tree, but nothing matches item 4. Furthermore, item 183 is the last item in the leaf. btrfs_log_prealloc_extents() is responsible for logging prealloc extents beyond i_size. It first truncates any previously logged prealloc extents that start beyond i_size. Then, it walks the filesystem tree and copies the prealloc extent items to the log tree. If it hits the end of a leaf, then it calls btrfs_next_leaf(), which unlocks the tree and does another search. However, while the filesystem tree is unlocked, an ordered extent completion may modify the tree. In particular, it may insert an extent item that overlaps with an extent item that was already copied to the log tree. This may manifest in several ways depending on the exact scenario, including an EEXIST error that is silently translated to a full sync, overlapping items in the log tree, or this crash. This particular crash is triggered by the following sequence of events: - Initially, the file has i_size=4k, a regular extent from 0-4k, and a prealloc extent beyond i_size from 4k-12k. The prealloc extent item is the last item in its B-tree leaf. - The file is fsync'd, which copies its inode item and both extent items to the log tree. - An xattr is set on the file, which sets the BTRFS_INODE_COPY_EVERYTHING flag. - The range 4k-8k in the file is written using direct I/O. i_size is extended to 8k, but the ordered extent is still in flight. - The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this calls copy_inode_items_to_log(), which calls btrfs_log_prealloc_extents(). - btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the filesystem tree. Since it starts before i_size, it skips it. Since it is the last item in its B-tree leaf, it calls btrfs_next_leaf(). - btrfs_next_leaf() unlocks the path. - The ordered extent completion runs, which converts the 4k-8k part of the prealloc extent to written and inserts the remaining prealloc part from 8k-12k. - btrfs_next_leaf() does a search and finds the new prealloc extent 8k-12k. - btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into the log tree. Note that it overlaps with the 4k-12k prealloc extent that was copied to the log tree by the first fsync. - fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k extent that was written. - This tries to drop the range 4k-8k in the log tree, which requires adjusting the start of the 4k-12k prealloc extent in the log tree to 8k. - btrfs_set_item_key_safe() sees that there is already an extent starting at 8k in the log tree and calls BUG(). Fix this by detecting when we're about to insert an overlapping file extent item in the log tree and truncating the part that would overlap. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Omar Sandoval <[email protected]> Signed-off-by: David Sterba <[email protected]>
kdave
pushed a commit
that referenced
this pull request
May 31, 2024
We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) torvalds#11 __do_sys_fdatasync (fs/sync.c:225:9) torvalds#12 __se_sys_fdatasync (fs/sync.c:223:1) torvalds#13 __x64_sys_fdatasync (fs/sync.c:223:1) torvalds#14 do_syscall_x64 (arch/x86/entry/common.c:52:14) torvalds#15 do_syscall_64 (arch/x86/entry/common.c:83:7) torvalds#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of the filesystem tree at the time of the crash: >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0)) >>> print_extent_buffer(nodes[0]) leaf 30425088 level 0 items 184 generation 9 owner 5 leaf 30425088 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da ... item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160 generation 7 transid 7 size 4096 nbytes 12288 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 6 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417703.220000000 (2024-05-22 15:41:43) mtime 1716417703.220000000 (2024-05-22 15:41:43) otime 1716417703.220000000 (2024-05-22 15:41:43) item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13 index 195 namelen 3 name: 193 item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 8192 ram 12288 extent compression 0 (none) item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 Item 5 in the log tree corresponds to item 183 in the filesystem tree, but nothing matches item 4. Furthermore, item 183 is the last item in the leaf. btrfs_log_prealloc_extents() is responsible for logging prealloc extents beyond i_size. It first truncates any previously logged prealloc extents that start beyond i_size. Then, it walks the filesystem tree and copies the prealloc extent items to the log tree. If it hits the end of a leaf, then it calls btrfs_next_leaf(), which unlocks the tree and does another search. However, while the filesystem tree is unlocked, an ordered extent completion may modify the tree. In particular, it may insert an extent item that overlaps with an extent item that was already copied to the log tree. This may manifest in several ways depending on the exact scenario, including an EEXIST error that is silently translated to a full sync, overlapping items in the log tree, or this crash. This particular crash is triggered by the following sequence of events: - Initially, the file has i_size=4k, a regular extent from 0-4k, and a prealloc extent beyond i_size from 4k-12k. The prealloc extent item is the last item in its B-tree leaf. - The file is fsync'd, which copies its inode item and both extent items to the log tree. - An xattr is set on the file, which sets the BTRFS_INODE_COPY_EVERYTHING flag. - The range 4k-8k in the file is written using direct I/O. i_size is extended to 8k, but the ordered extent is still in flight. - The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this calls copy_inode_items_to_log(), which calls btrfs_log_prealloc_extents(). - btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the filesystem tree. Since it starts before i_size, it skips it. Since it is the last item in its B-tree leaf, it calls btrfs_next_leaf(). - btrfs_next_leaf() unlocks the path. - The ordered extent completion runs, which converts the 4k-8k part of the prealloc extent to written and inserts the remaining prealloc part from 8k-12k. - btrfs_next_leaf() does a search and finds the new prealloc extent 8k-12k. - btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into the log tree. Note that it overlaps with the 4k-12k prealloc extent that was copied to the log tree by the first fsync. - fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k extent that was written. - This tries to drop the range 4k-8k in the log tree, which requires adjusting the start of the 4k-12k prealloc extent in the log tree to 8k. - btrfs_set_item_key_safe() sees that there is already an extent starting at 8k in the log tree and calls BUG(). Fix this by detecting when we're about to insert an overlapping file extent item in the log tree and truncating the part that would overlap. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Omar Sandoval <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Jun 3, 2024
We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) torvalds#11 __do_sys_fdatasync (fs/sync.c:225:9) torvalds#12 __se_sys_fdatasync (fs/sync.c:223:1) torvalds#13 __x64_sys_fdatasync (fs/sync.c:223:1) torvalds#14 do_syscall_x64 (arch/x86/entry/common.c:52:14) torvalds#15 do_syscall_64 (arch/x86/entry/common.c:83:7) torvalds#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of the filesystem tree at the time of the crash: >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0)) >>> print_extent_buffer(nodes[0]) leaf 30425088 level 0 items 184 generation 9 owner 5 leaf 30425088 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da ... item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160 generation 7 transid 7 size 4096 nbytes 12288 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 6 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417703.220000000 (2024-05-22 15:41:43) mtime 1716417703.220000000 (2024-05-22 15:41:43) otime 1716417703.220000000 (2024-05-22 15:41:43) item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13 index 195 namelen 3 name: 193 item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 8192 ram 12288 extent compression 0 (none) item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 Item 5 in the log tree corresponds to item 183 in the filesystem tree, but nothing matches item 4. Furthermore, item 183 is the last item in the leaf. btrfs_log_prealloc_extents() is responsible for logging prealloc extents beyond i_size. It first truncates any previously logged prealloc extents that start beyond i_size. Then, it walks the filesystem tree and copies the prealloc extent items to the log tree. If it hits the end of a leaf, then it calls btrfs_next_leaf(), which unlocks the tree and does another search. However, while the filesystem tree is unlocked, an ordered extent completion may modify the tree. In particular, it may insert an extent item that overlaps with an extent item that was already copied to the log tree. This may manifest in several ways depending on the exact scenario, including an EEXIST error that is silently translated to a full sync, overlapping items in the log tree, or this crash. This particular crash is triggered by the following sequence of events: - Initially, the file has i_size=4k, a regular extent from 0-4k, and a prealloc extent beyond i_size from 4k-12k. The prealloc extent item is the last item in its B-tree leaf. - The file is fsync'd, which copies its inode item and both extent items to the log tree. - An xattr is set on the file, which sets the BTRFS_INODE_COPY_EVERYTHING flag. - The range 4k-8k in the file is written using direct I/O. i_size is extended to 8k, but the ordered extent is still in flight. - The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this calls copy_inode_items_to_log(), which calls btrfs_log_prealloc_extents(). - btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the filesystem tree. Since it starts before i_size, it skips it. Since it is the last item in its B-tree leaf, it calls btrfs_next_leaf(). - btrfs_next_leaf() unlocks the path. - The ordered extent completion runs, which converts the 4k-8k part of the prealloc extent to written and inserts the remaining prealloc part from 8k-12k. - btrfs_next_leaf() does a search and finds the new prealloc extent 8k-12k. - btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into the log tree. Note that it overlaps with the 4k-12k prealloc extent that was copied to the log tree by the first fsync. - fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k extent that was written. - This tries to drop the range 4k-8k in the log tree, which requires adjusting the start of the 4k-12k prealloc extent in the log tree to 8k. - btrfs_set_item_key_safe() sees that there is already an extent starting at 8k in the log tree and calls BUG(). Fix this by detecting when we're about to insert an overlapping file extent item in the log tree and truncating the part that would overlap. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Omar Sandoval <[email protected]> Signed-off-by: David Sterba <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Jun 5, 2024
We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) torvalds#11 __do_sys_fdatasync (fs/sync.c:225:9) torvalds#12 __se_sys_fdatasync (fs/sync.c:223:1) torvalds#13 __x64_sys_fdatasync (fs/sync.c:223:1) torvalds#14 do_syscall_x64 (arch/x86/entry/common.c:52:14) torvalds#15 do_syscall_64 (arch/x86/entry/common.c:83:7) torvalds#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of the filesystem tree at the time of the crash: >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0)) >>> print_extent_buffer(nodes[0]) leaf 30425088 level 0 items 184 generation 9 owner 5 leaf 30425088 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da ... item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160 generation 7 transid 7 size 4096 nbytes 12288 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 6 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417703.220000000 (2024-05-22 15:41:43) mtime 1716417703.220000000 (2024-05-22 15:41:43) otime 1716417703.220000000 (2024-05-22 15:41:43) item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13 index 195 namelen 3 name: 193 item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 8192 ram 12288 extent compression 0 (none) item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 Item 5 in the log tree corresponds to item 183 in the filesystem tree, but nothing matches item 4. Furthermore, item 183 is the last item in the leaf. btrfs_log_prealloc_extents() is responsible for logging prealloc extents beyond i_size. It first truncates any previously logged prealloc extents that start beyond i_size. Then, it walks the filesystem tree and copies the prealloc extent items to the log tree. If it hits the end of a leaf, then it calls btrfs_next_leaf(), which unlocks the tree and does another search. However, while the filesystem tree is unlocked, an ordered extent completion may modify the tree. In particular, it may insert an extent item that overlaps with an extent item that was already copied to the log tree. This may manifest in several ways depending on the exact scenario, including an EEXIST error that is silently translated to a full sync, overlapping items in the log tree, or this crash. This particular crash is triggered by the following sequence of events: - Initially, the file has i_size=4k, a regular extent from 0-4k, and a prealloc extent beyond i_size from 4k-12k. The prealloc extent item is the last item in its B-tree leaf. - The file is fsync'd, which copies its inode item and both extent items to the log tree. - An xattr is set on the file, which sets the BTRFS_INODE_COPY_EVERYTHING flag. - The range 4k-8k in the file is written using direct I/O. i_size is extended to 8k, but the ordered extent is still in flight. - The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this calls copy_inode_items_to_log(), which calls btrfs_log_prealloc_extents(). - btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the filesystem tree. Since it starts before i_size, it skips it. Since it is the last item in its B-tree leaf, it calls btrfs_next_leaf(). - btrfs_next_leaf() unlocks the path. - The ordered extent completion runs, which converts the 4k-8k part of the prealloc extent to written and inserts the remaining prealloc part from 8k-12k. - btrfs_next_leaf() does a search and finds the new prealloc extent 8k-12k. - btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into the log tree. Note that it overlaps with the 4k-12k prealloc extent that was copied to the log tree by the first fsync. - fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k extent that was written. - This tries to drop the range 4k-8k in the log tree, which requires adjusting the start of the 4k-12k prealloc extent in the log tree to 8k. - btrfs_set_item_key_safe() sees that there is already an extent starting at 8k in the log tree and calls BUG(). Fix this by detecting when we're about to insert an overlapping file extent item in the log tree and truncating the part that would overlap. CC: [email protected] # 6.1+ Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Omar Sandoval <[email protected]> Signed-off-by: David Sterba <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Jun 11, 2024
…PLES event" This reverts commit 7d1405c. This causes segfaults in some cases, as reported by Milian: ``` sudo /usr/bin/perf record -z --call-graph dwarf -e cycles -e raw_syscalls:sys_enter ls ... [ perf record: Woken up 3 times to write data ] malloc(): invalid next size (unsorted) Aborted ``` Backtrace with GDB + debuginfod: ``` malloc(): invalid next size (unsorted) Thread 1 "perf" received signal SIGABRT, Aborted. __pthread_kill_implementation (threadid=<optimized out>, signo=signo@entry=6, no_tid=no_tid@entry=0) at pthread_kill.c:44 Downloading source file /usr/src/debug/glibc/glibc/nptl/pthread_kill.c 44 return INTERNAL_SYSCALL_ERROR_P (ret) ? INTERNAL_SYSCALL_ERRNO (ret) : 0; (gdb) bt #0 __pthread_kill_implementation (threadid=<optimized out>, signo=signo@entry=6, no_tid=no_tid@entry=0) at pthread_kill.c:44 #1 0x00007ffff6ea8eb3 in __pthread_kill_internal (threadid=<optimized out>, signo=6) at pthread_kill.c:78 #2 0x00007ffff6e50a30 in __GI_raise (sig=sig@entry=6) at ../sysdeps/posix/ raise.c:26 #3 0x00007ffff6e384c3 in __GI_abort () at abort.c:79 #4 0x00007ffff6e39354 in __libc_message_impl (fmt=fmt@entry=0x7ffff6fc22ea "%s\n") at ../sysdeps/posix/libc_fatal.c:132 #5 0x00007ffff6eb3085 in malloc_printerr (str=str@entry=0x7ffff6fc5850 "malloc(): invalid next size (unsorted)") at malloc.c:5772 #6 0x00007ffff6eb657c in _int_malloc (av=av@entry=0x7ffff6ff6ac0 <main_arena>, bytes=bytes@entry=368) at malloc.c:4081 #7 0x00007ffff6eb877e in __libc_calloc (n=<optimized out>, elem_size=<optimized out>) at malloc.c:3754 #8 0x000055555569bdb6 in perf_session.do_write_header () #9 0x00005555555a373a in __cmd_record.constprop.0 () #10 0x00005555555a6846 in cmd_record () torvalds#11 0x000055555564db7f in run_builtin () torvalds#12 0x000055555558ed77 in main () ``` Valgrind memcheck: ``` ==45136== Invalid write of size 8 ==45136== at 0x2B38A5: perf_event__synthesize_id_sample (in /usr/bin/perf) ==45136== by 0x157069: __cmd_record.constprop.0 (in /usr/bin/perf) ==45136== by 0x15A845: cmd_record (in /usr/bin/perf) ==45136== by 0x201B7E: run_builtin (in /usr/bin/perf) ==45136== by 0x142D76: main (in /usr/bin/perf) ==45136== Address 0x6a866a8 is 0 bytes after a block of size 40 alloc'd ==45136== at 0x4849BF3: calloc (vg_replace_malloc.c:1675) ==45136== by 0x3574AB: zalloc (in /usr/bin/perf) ==45136== by 0x1570E0: __cmd_record.constprop.0 (in /usr/bin/perf) ==45136== by 0x15A845: cmd_record (in /usr/bin/perf) ==45136== by 0x201B7E: run_builtin (in /usr/bin/perf) ==45136== by 0x142D76: main (in /usr/bin/perf) ==45136== ==45136== Syscall param write(buf) points to unaddressable byte(s) ==45136== at 0x575953D: __libc_write (write.c:26) ==45136== by 0x575953D: write (write.c:24) ==45136== by 0x35761F: ion (in /usr/bin/perf) ==45136== by 0x357778: writen (in /usr/bin/perf) ==45136== by 0x1548F7: record__write (in /usr/bin/perf) ==45136== by 0x15708A: __cmd_record.constprop.0 (in /usr/bin/perf) ==45136== by 0x15A845: cmd_record (in /usr/bin/perf) ==45136== by 0x201B7E: run_builtin (in /usr/bin/perf) ==45136== by 0x142D76: main (in /usr/bin/perf) ==45136== Address 0x6a866a8 is 0 bytes after a block of size 40 alloc'd ==45136== at 0x4849BF3: calloc (vg_replace_malloc.c:1675) ==45136== by 0x3574AB: zalloc (in /usr/bin/perf) ==45136== by 0x1570E0: __cmd_record.constprop.0 (in /usr/bin/perf) ==45136== by 0x15A845: cmd_record (in /usr/bin/perf) ==45136== by 0x201B7E: run_builtin (in /usr/bin/perf) ==45136== by 0x142D76: main (in /usr/bin/perf) ==45136== ----- Closes: https://lore.kernel.org/linux-perf-users/23879991.0LEYPuXRzz@milian-workstation/ Reported-by: Milian Wolff <[email protected]> Tested-by: Milian Wolff <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Kan Liang <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: [email protected] # 6.8+ Link: https://lore.kernel.org/lkml/Zl9ksOlHJHnKM70p@x1 Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Jun 27, 2024
The code in ocfs2_dio_end_io_write() estimates number of necessary transaction credits using ocfs2_calc_extend_credits(). This however does not take into account that the IO could be arbitrarily large and can contain arbitrary number of extents. Extent tree manipulations do often extend the current transaction but not in all of the cases. For example if we have only single block extents in the tree, ocfs2_mark_extent_written() will end up calling ocfs2_replace_extent_rec() all the time and we will never extend the current transaction and eventually exhaust all the transaction credits if the IO contains many single block extents. Once that happens a WARN_ON(jbd2_handle_buffer_credits(handle) <= 0) is triggered in jbd2_journal_dirty_metadata() and subsequently OCFS2 aborts in response to this error. This was actually triggered by one of our customers on a heavily fragmented OCFS2 filesystem. To fix the issue make sure the transaction always has enough credits for one extent insert before each call of ocfs2_mark_extent_written(). Heming Zhao said: ------ PANIC: "Kernel panic - not syncing: OCFS2: (device dm-1): panic forced after error" PID: xxx TASK: xxxx CPU: 5 COMMAND: "SubmitThread-CA" #0 machine_kexec at ffffffff8c069932 #1 __crash_kexec at ffffffff8c1338fa #2 panic at ffffffff8c1d69b9 #3 ocfs2_handle_error at ffffffffc0c86c0c [ocfs2] #4 __ocfs2_abort at ffffffffc0c88387 [ocfs2] #5 ocfs2_journal_dirty at ffffffffc0c51e98 [ocfs2] #6 ocfs2_split_extent at ffffffffc0c27ea3 [ocfs2] #7 ocfs2_change_extent_flag at ffffffffc0c28053 [ocfs2] #8 ocfs2_mark_extent_written at ffffffffc0c28347 [ocfs2] #9 ocfs2_dio_end_io_write at ffffffffc0c2bef9 [ocfs2] #10 ocfs2_dio_end_io at ffffffffc0c2c0f5 [ocfs2] torvalds#11 dio_complete at ffffffff8c2b9fa7 torvalds#12 do_blockdev_direct_IO at ffffffff8c2bc09f torvalds#13 ocfs2_direct_IO at ffffffffc0c2b653 [ocfs2] torvalds#14 generic_file_direct_write at ffffffff8c1dcf14 torvalds#15 __generic_file_write_iter at ffffffff8c1dd07b torvalds#16 ocfs2_file_write_iter at ffffffffc0c49f1f [ocfs2] torvalds#17 aio_write at ffffffff8c2cc72e torvalds#18 kmem_cache_alloc at ffffffff8c248dde torvalds#19 do_io_submit at ffffffff8c2ccada torvalds#20 do_syscall_64 at ffffffff8c004984 torvalds#21 entry_SYSCALL_64_after_hwframe at ffffffff8c8000ba Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Fixes: c15471f ("ocfs2: fix sparse file & data ordering issue in direct io") Signed-off-by: Jan Kara <[email protected]> Reviewed-by: Joseph Qi <[email protected]> Reviewed-by: Heming Zhao <[email protected]> Cc: Mark Fasheh <[email protected]> Cc: Joel Becker <[email protected]> Cc: Junxiao Bi <[email protected]> Cc: Changwei Ge <[email protected]> Cc: Gang He <[email protected]> Cc: Jun Piao <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Jul 17, 2024
Since f663a03 ("bpf, x64: Remove tail call detection"), tail_call_reachable won't be detected in x86 JIT. And, tail_call_reachable is provided by verifier. Therefore, in test_bpf, the tail_call_reachable must be provided in test cases before running. Fix and test: [ 174.828662] test_bpf: #0 Tail call leaf jited:1 170 PASS [ 174.829574] test_bpf: #1 Tail call 2 jited:1 244 PASS [ 174.830363] test_bpf: #2 Tail call 3 jited:1 296 PASS [ 174.830924] test_bpf: #3 Tail call 4 jited:1 719 PASS [ 174.831863] test_bpf: #4 Tail call load/store leaf jited:1 197 PASS [ 174.832240] test_bpf: #5 Tail call load/store jited:1 326 PASS [ 174.832240] test_bpf: #6 Tail call error path, max count reached jited:1 2214 PASS [ 174.835713] test_bpf: #7 Tail call count preserved across function calls jited:1 609751 PASS [ 175.446098] test_bpf: #8 Tail call error path, NULL target jited:1 472 PASS [ 175.447597] test_bpf: #9 Tail call error path, index out of range jited:1 206 PASS [ 175.448833] test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed] Reported-by: kernel test robot <[email protected]> Closes: https://lore.kernel.org/oe-lkp/[email protected] Fixes: f663a03 ("bpf, x64: Remove tail call detection") Signed-off-by: Leon Hwang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Alexei Starovoitov <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Jul 17, 2024
Danielle Ratson says: ==================== Add ability to flash modules' firmware CMIS compliant modules such as QSFP-DD might be running a firmware that can be updated in a vendor-neutral way by exchanging messages between the host and the module as described in section 7.2.2 of revision 4.0 of the CMIS standard. According to the CMIS standard, the firmware update process is done using a CDB commands sequence. CDB (Command Data Block Message Communication) reads and writes are performed on memory map pages 9Fh-AFh according to the CMIS standard, section 8.12 of revision 4.0. Add a pair of new ethtool messages that allow: * User space to trigger firmware update of transceiver modules * The kernel to notify user space about the progress of the process The user interface is designed to be asynchronous in order to avoid RTNL being held for too long and to allow several modules to be updated simultaneously. The interface is designed with CMIS compliant modules in mind, but kept generic enough to accommodate future use cases, if these arise. The kernel interface that will implement the firmware update using CDB command will include 2 layers that will be added under ethtool: * The upper layer that will be triggered from the module layer, is cmis_ fw_update. * The lower one is cmis_cdb. In the future there might be more operations to implement using CDB commands. Therefore, the idea is to keep the cmis_cdb interface clean and the cmis_fw_update specific to the cdb commands handling it. The communication between the kernel and the driver will be done using two ethtool operations that enable reading and writing the transceiver module EEPROM. The operation ethtool_ops::get_module_eeprom_by_page, that is already implemented, will be used for reading from the EEPROM the CDB reply, e.g. reading module setting, state, etc. The operation ethtool_ops::set_module_eeprom_by_page, that is added in the current patchset, will be used for writing to the EEPROM the CDB command such as start firmware image, run firmware image, etc. Therefore in order for a driver to implement module flashing, that driver needs to implement the two functions mentioned above. Patchset overview: Patch #1-#2: Implement the EEPROM writing in mlxsw. Patch #3: Define the interface between the kernel and user space. Patch #4: Add ability to notify the flashing firmware progress. Patch #5: Veto operations during flashing. Patch #6: Add extended compliance codes. Patch #7: Add the cdb layer. Patch #8: Add the fw_update layer. Patch #9: Add ability to flash transceiver modules' firmware. v8: Patch #7: * In the ethtool_cmis_wait_for_cond() evaluate the condition once more to decide if the error code should be -ETIMEDOUT or something else. * s/netdev_err/netdev_err_once. v7: Patch #4: * Return -ENOMEM instead of PTR_ERR(attr) on ethnl_module_fw_flash_ntf_put_err(). Patch #9: * Fix Warning for not unlocking the spin_lock in the error flow on module_flash_fw_work_list_add(). * Avoid the fall-through on ethnl_sock_priv_destroy(). v6: * Squash some of the last patch to patch #5 and patch #9. Patch #3: * Add paragraph in .rst file. Patch #4: * Reserve '1' more place on SKB for NUL terminator in the error message string. * Add more prints on error flow, re-write the printing function and add ethnl_module_fw_flash_ntf_put_err(). * Change the communication method so notification will be sent in unicast instead of multicast. * Add new 'struct ethnl_module_fw_flash_ntf_params' that holds the relevant info for unicast communication and use it to send notification to the specific socket. * s/nla_put_u64_64bit/nla_put_uint/ Patch #7: * In ethtool_cmis_cdb_init(), Use 'const' for the 'params' parameter. Patch #8: * Add a list field to struct ethtool_module_fw_flash for module_fw_flash_work_list that will be presented in the next patch. * Move ethtool_cmis_fw_update() cleaning to a new function that will be represented in the next patch. * Move some of the fields in struct ethtool_module_fw_flash to a separate struct, so ethtool_cmis_fw_update() will get only the relevant parameters for it. * Edit the relevant functions to get the relevant params for them. * s/CMIS_MODULE_READY_MAX_DURATION_USEC/CMIS_MODULE_READY_MAX_DURATION_MSEC Patch #9: * Add a paragraph in the commit message. * Rename labels in module_flash_fw_schedule(). * Add info to genl_sk_priv_*() and implement the relevant callbacks, in order to handle properly a scenario of closing the socket from user space before the work item was ended. * Add a list the holds all the ethtool_module_fw_flash struct that corresponds to the in progress work items. * Add a new enum for the socket types. * Use both above to identify a flashing socket, add it to the list and when closing socket affect only the flashing type. * Create a new function that will get the work item instead of ethtool_cmis_fw_update(). * Edit the relevant functions to get the relevant params for them. * The new function will call the old ethtool_cmis_fw_update(), and do the cleaning, so the existence of the list should be completely isolated in module.c. =================== Signed-off-by: David S. Miller <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Jul 17, 2024
Petr Machata says: ==================== selftest: Clean-up and stabilize mirroring tests The mirroring selftests work by sending ICMP traffic between two hosts. Along the way, this traffic is mirrored to a gretap netdevice, and counter taps are then installed strategically along the path of the mirrored traffic to verify the mirroring took place. The problem with this is that besides mirroring the primary traffic, any other service traffic is mirrored as well. At the same time, because the tests need to work in HW-offloaded scenarios, the ability of the device to do arbitrary packet inspection should not be taken for granted. Most tests therefore simply use matchall, one uses flower to match on IP address. As a result, the selftests are noisy. mirror_test() accommodated this noisiness by giving the counters an allowance of several packets. But that only works up to a point, and on busy systems won't be always enough. In this patch set, clean up and stabilize the mirroring selftests. The original intention was to port the tests over to UDP, but the logic of ICMP ends up being so entangled in the mirroring selftests that the changes feel overly invasive. Instead, ICMP is kept, but where possible, we match on ICMP message type, thus filtering out hits by other ICMP messages. Where this is not practical (where the counter tap is put on a device that carries encapsulated packets), switch the counter condition to _at least_ X observed packets. This is less robust, but barely so -- probably the only scenario that this would not catch is something like erroneous packet duplication, which would hopefully get caught by the numerous other tests in this extensive suite. - Patches #1 to #3 clean up parameters at various helpers. - Patches #4 to #6 stabilize the mirroring selftests as described above. - Mirroring tests currently allow testing SW datapath even on HW netdevices by trapping traffic to the SW datapath. This complicates the tests a bit without a good reason: to test SW datapath, just run the selftests on the veth topology. Thus in patch #7, drop support for this dual SW/HW testing. - At this point, some cleanups were either made possible by the previous patches, or were always possible. In patches #8 to torvalds#11, realize these cleanups. - In patch torvalds#12, fix mlxsw mirror_gre selftest to respect setting TESTS. ==================== Signed-off-by: David S. Miller <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Aug 9, 2024
When l2tp tunnels use a socket provided by userspace, we can hit lockdep splats like the below when data is transmitted through another (unrelated) userspace socket which then gets routed over l2tp. This issue was previously discussed here: https://lore.kernel.org/netdev/[email protected]/ The solution is to have lockdep treat socket locks of l2tp tunnel sockets separately than those of standard INET sockets. To do so, use a different lockdep subclass where lock nesting is possible. ============================================ WARNING: possible recursive locking detected 6.10.0+ torvalds#34 Not tainted -------------------------------------------- iperf3/771 is trying to acquire lock: ffff8881027601d8 (slock-AF_INET/1){+.-.}-{2:2}, at: l2tp_xmit_skb+0x243/0x9d0 but task is already holding lock: ffff888102650d98 (slock-AF_INET/1){+.-.}-{2:2}, at: tcp_v4_rcv+0x1848/0x1e10 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(slock-AF_INET/1); lock(slock-AF_INET/1); *** DEADLOCK *** May be due to missing lock nesting notation 10 locks held by iperf3/771: #0: ffff888102650258 (sk_lock-AF_INET){+.+.}-{0:0}, at: tcp_sendmsg+0x1a/0x40 #1: ffffffff822ac220 (rcu_read_lock){....}-{1:2}, at: __ip_queue_xmit+0x4b/0xbc0 #2: ffffffff822ac220 (rcu_read_lock){....}-{1:2}, at: ip_finish_output2+0x17a/0x1130 #3: ffffffff822ac220 (rcu_read_lock){....}-{1:2}, at: process_backlog+0x28b/0x9f0 #4: ffffffff822ac220 (rcu_read_lock){....}-{1:2}, at: ip_local_deliver_finish+0xf9/0x260 #5: ffff888102650d98 (slock-AF_INET/1){+.-.}-{2:2}, at: tcp_v4_rcv+0x1848/0x1e10 #6: ffffffff822ac220 (rcu_read_lock){....}-{1:2}, at: __ip_queue_xmit+0x4b/0xbc0 #7: ffffffff822ac220 (rcu_read_lock){....}-{1:2}, at: ip_finish_output2+0x17a/0x1130 #8: ffffffff822ac1e0 (rcu_read_lock_bh){....}-{1:2}, at: __dev_queue_xmit+0xcc/0x1450 #9: ffff888101f33258 (dev->qdisc_tx_busylock ?: &qdisc_tx_busylock#2){+...}-{2:2}, at: __dev_queue_xmit+0x513/0x1450 stack backtrace: CPU: 2 UID: 0 PID: 771 Comm: iperf3 Not tainted 6.10.0+ torvalds#34 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x69/0xa0 dump_stack+0xc/0x20 __lock_acquire+0x135d/0x2600 ? srso_alias_return_thunk+0x5/0xfbef5 lock_acquire+0xc4/0x2a0 ? l2tp_xmit_skb+0x243/0x9d0 ? __skb_checksum+0xa3/0x540 _raw_spin_lock_nested+0x35/0x50 ? l2tp_xmit_skb+0x243/0x9d0 l2tp_xmit_skb+0x243/0x9d0 l2tp_eth_dev_xmit+0x3c/0xc0 dev_hard_start_xmit+0x11e/0x420 sch_direct_xmit+0xc3/0x640 __dev_queue_xmit+0x61c/0x1450 ? ip_finish_output2+0xf4c/0x1130 ip_finish_output2+0x6b6/0x1130 ? srso_alias_return_thunk+0x5/0xfbef5 ? __ip_finish_output+0x217/0x380 ? srso_alias_return_thunk+0x5/0xfbef5 __ip_finish_output+0x217/0x380 ip_output+0x99/0x120 __ip_queue_xmit+0xae4/0xbc0 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? tcp_options_write.constprop.0+0xcb/0x3e0 ip_queue_xmit+0x34/0x40 __tcp_transmit_skb+0x1625/0x1890 __tcp_send_ack+0x1b8/0x340 tcp_send_ack+0x23/0x30 __tcp_ack_snd_check+0xa8/0x530 ? srso_alias_return_thunk+0x5/0xfbef5 tcp_rcv_established+0x412/0xd70 tcp_v4_do_rcv+0x299/0x420 tcp_v4_rcv+0x1991/0x1e10 ip_protocol_deliver_rcu+0x50/0x220 ip_local_deliver_finish+0x158/0x260 ip_local_deliver+0xc8/0xe0 ip_rcv+0xe5/0x1d0 ? __pfx_ip_rcv+0x10/0x10 __netif_receive_skb_one_core+0xce/0xe0 ? process_backlog+0x28b/0x9f0 __netif_receive_skb+0x34/0xd0 ? process_backlog+0x28b/0x9f0 process_backlog+0x2cb/0x9f0 __napi_poll.constprop.0+0x61/0x280 net_rx_action+0x332/0x670 ? srso_alias_return_thunk+0x5/0xfbef5 ? find_held_lock+0x2b/0x80 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 handle_softirqs+0xda/0x480 ? __dev_queue_xmit+0xa2c/0x1450 do_softirq+0xa1/0xd0 </IRQ> <TASK> __local_bh_enable_ip+0xc8/0xe0 ? __dev_queue_xmit+0xa2c/0x1450 __dev_queue_xmit+0xa48/0x1450 ? ip_finish_output2+0xf4c/0x1130 ip_finish_output2+0x6b6/0x1130 ? srso_alias_return_thunk+0x5/0xfbef5 ? __ip_finish_output+0x217/0x380 ? srso_alias_return_thunk+0x5/0xfbef5 __ip_finish_output+0x217/0x380 ip_output+0x99/0x120 __ip_queue_xmit+0xae4/0xbc0 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? tcp_options_write.constprop.0+0xcb/0x3e0 ip_queue_xmit+0x34/0x40 __tcp_transmit_skb+0x1625/0x1890 tcp_write_xmit+0x766/0x2fb0 ? __entry_text_end+0x102ba9/0x102bad ? srso_alias_return_thunk+0x5/0xfbef5 ? __might_fault+0x74/0xc0 ? srso_alias_return_thunk+0x5/0xfbef5 __tcp_push_pending_frames+0x56/0x190 tcp_push+0x117/0x310 tcp_sendmsg_locked+0x14c1/0x1740 tcp_sendmsg+0x28/0x40 inet_sendmsg+0x5d/0x90 sock_write_iter+0x242/0x2b0 vfs_write+0x68d/0x800 ? __pfx_sock_write_iter+0x10/0x10 ksys_write+0xc8/0xf0 __x64_sys_write+0x3d/0x50 x64_sys_call+0xfaf/0x1f50 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f4d143af992 Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 89 5c 24 08 0f 05 <c3> e9 01 cc ff ff 41 54 b8 02 00 00 0 RSP: 002b:00007ffd65032058 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f4d143af992 RDX: 0000000000000025 RSI: 00007f4d143f3bcc RDI: 0000000000000005 RBP: 00007f4d143f2b28 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f4d143f3bcc R13: 0000000000000005 R14: 0000000000000000 R15: 00007ffd650323f0 </TASK> Fixes: 0b2c597 ("l2tp: close all race conditions in l2tp_tunnel_register()") Suggested-by: Eric Dumazet <[email protected]> Reported-by: [email protected] Closes: https://syzkaller.appspot.com/bug?extid=6acef9e0a4d1f46c83d4 CC: [email protected] CC: [email protected] Signed-off-by: James Chapman <[email protected]> Signed-off-by: Tom Parkin <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Sep 6, 2024
Ethtool callbacks can be executed while reset is in progress and try to access deleted resources, e.g. getting coalesce settings can result in a NULL pointer dereference seen below. Reproduction steps: Once the driver is fully initialized, trigger reset: # echo 1 > /sys/class/net/<interface>/device/reset when reset is in progress try to get coalesce settings using ethtool: # ethtool -c <interface> BUG: kernel NULL pointer dereference, address: 0000000000000020 PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 11 PID: 19713 Comm: ethtool Tainted: G S 6.10.0-rc7+ #7 RIP: 0010:ice_get_q_coalesce+0x2e/0xa0 [ice] RSP: 0018:ffffbab1e9bcf6a8 EFLAGS: 00010206 RAX: 000000000000000c RBX: ffff94512305b028 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff9451c3f2e588 RDI: ffff9451c3f2e588 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff9451c3f2e580 R11: 000000000000001f R12: ffff945121fa9000 R13: ffffbab1e9bcf760 R14: 0000000000000013 R15: ffffffff9e65dd40 FS: 00007faee5fbe740(0000) GS:ffff94546fd80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000020 CR3: 0000000106c2e005 CR4: 00000000001706f0 Call Trace: <TASK> ice_get_coalesce+0x17/0x30 [ice] coalesce_prepare_data+0x61/0x80 ethnl_default_doit+0xde/0x340 genl_family_rcv_msg_doit+0xf2/0x150 genl_rcv_msg+0x1b3/0x2c0 netlink_rcv_skb+0x5b/0x110 genl_rcv+0x28/0x40 netlink_unicast+0x19c/0x290 netlink_sendmsg+0x222/0x490 __sys_sendto+0x1df/0x1f0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x82/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7faee60d8e27 Calling netif_device_detach() before reset makes the net core not call the driver when ethtool command is issued, the attempt to execute an ethtool command during reset will result in the following message: netlink error: No such device instead of NULL pointer dereference. Once reset is done and ice_rebuild() is executing, the netif_device_attach() is called to allow for ethtool operations to occur again in a safe manner. Fixes: fcea6f3 ("ice: Add stats and ethtool support") Suggested-by: Jakub Kicinski <[email protected]> Reviewed-by: Igor Bagnucki <[email protected]> Signed-off-by: Dawid Osuchowski <[email protected]> Tested-by: Pucha Himasekhar Reddy <[email protected]> (A Contingent worker at Intel) Reviewed-by: Michal Schmidt <[email protected]> Signed-off-by: Tony Nguyen <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Sep 23, 2024
The fields in the hist_entry are filled on-demand which means they only have meaningful values when relevant sort keys are used. So if neither of 'dso' nor 'sym' sort keys are used, the map/symbols in the hist entry can be garbage. So it shouldn't access it unconditionally. I got a segfault, when I wanted to see cgroup profiles. $ sudo perf record -a --all-cgroups --synth=cgroup true $ sudo perf report -s cgroup Program received signal SIGSEGV, Segmentation fault. 0x00005555557a8d90 in map__dso (map=0x0) at util/map.h:48 48 return RC_CHK_ACCESS(map)->dso; (gdb) bt #0 0x00005555557a8d90 in map__dso (map=0x0) at util/map.h:48 #1 0x00005555557aa39b in map__load (map=0x0) at util/map.c:344 #2 0x00005555557aa592 in map__find_symbol (map=0x0, addr=140736115941088) at util/map.c:385 #3 0x00005555557ef000 in hists__findnew_entry (hists=0x555556039d60, entry=0x7fffffffa4c0, al=0x7fffffffa8c0, sample_self=true) at util/hist.c:644 #4 0x00005555557ef61c in __hists__add_entry (hists=0x555556039d60, al=0x7fffffffa8c0, sym_parent=0x0, bi=0x0, mi=0x0, ki=0x0, block_info=0x0, sample=0x7fffffffaa90, sample_self=true, ops=0x0) at util/hist.c:761 #5 0x00005555557ef71f in hists__add_entry (hists=0x555556039d60, al=0x7fffffffa8c0, sym_parent=0x0, bi=0x0, mi=0x0, ki=0x0, sample=0x7fffffffaa90, sample_self=true) at util/hist.c:779 #6 0x00005555557f00fb in iter_add_single_normal_entry (iter=0x7fffffffa900, al=0x7fffffffa8c0) at util/hist.c:1015 #7 0x00005555557f09a7 in hist_entry_iter__add (iter=0x7fffffffa900, al=0x7fffffffa8c0, max_stack_depth=127, arg=0x7fffffffbce0) at util/hist.c:1260 #8 0x00005555555ba7ce in process_sample_event (tool=0x7fffffffbce0, event=0x7ffff7c14128, sample=0x7fffffffaa90, evsel=0x555556039ad0, machine=0x5555560388e8) at builtin-report.c:334 #9 0x00005555557b30c8 in evlist__deliver_sample (evlist=0x555556039010, tool=0x7fffffffbce0, event=0x7ffff7c14128, sample=0x7fffffffaa90, evsel=0x555556039ad0, machine=0x5555560388e8) at util/session.c:1232 #10 0x00005555557b32bc in machines__deliver_event (machines=0x5555560388e8, evlist=0x555556039010, event=0x7ffff7c14128, sample=0x7fffffffaa90, tool=0x7fffffffbce0, file_offset=110888, file_path=0x555556038ff0 "perf.data") at util/session.c:1271 torvalds#11 0x00005555557b3848 in perf_session__deliver_event (session=0x5555560386d0, event=0x7ffff7c14128, tool=0x7fffffffbce0, file_offset=110888, file_path=0x555556038ff0 "perf.data") at util/session.c:1354 torvalds#12 0x00005555557affaf in ordered_events__deliver_event (oe=0x555556038e60, event=0x555556135aa0) at util/session.c:132 torvalds#13 0x00005555557bb605 in do_flush (oe=0x555556038e60, show_progress=false) at util/ordered-events.c:245 torvalds#14 0x00005555557bb95c in __ordered_events__flush (oe=0x555556038e60, how=OE_FLUSH__ROUND, timestamp=0) at util/ordered-events.c:324 torvalds#15 0x00005555557bba46 in ordered_events__flush (oe=0x555556038e60, how=OE_FLUSH__ROUND) at util/ordered-events.c:342 torvalds#16 0x00005555557b1b3b in perf_event__process_finished_round (tool=0x7fffffffbce0, event=0x7ffff7c15bb8, oe=0x555556038e60) at util/session.c:780 torvalds#17 0x00005555557b3b27 in perf_session__process_user_event (session=0x5555560386d0, event=0x7ffff7c15bb8, file_offset=117688, file_path=0x555556038ff0 "perf.data") at util/session.c:1406 As you can see the entry->ms.map was NULL even if he->ms.map has a value. This is because 'sym' sort key is not given, so it cannot assume whether he->ms.sym and entry->ms.sym is the same. I only checked the 'sym' sort key here as it implies 'dso' behavior (so maps are the same). Fixes: ac01c8c ("perf hist: Update hist symbol when updating maps") Signed-off-by: Namhyung Kim <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Ian Rogers <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Kan Liang <[email protected]> Cc: Matt Fleming <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Stephane Eranian <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Sep 30, 2024
Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks in KVM x86, e.g. the same pattern of taking cpu_hotplug_lock outside of kvm_lock likely exists with __kvmclock_cpufreq_notifier(): cpuhp_cpufreq_online() | -> cpufreq_online() | -> cpufreq_gov_performance_limits() | -> __cpufreq_driver_target() | -> __target_index() | -> cpufreq_freq_transition_begin() | -> cpufreq_notify_transition() | -> ... __kvmclock_cpufreq_notifier() But, actually triggering such deadlocks is beyond rare due to the combination of dependencies and timings involved. E.g. the cpufreq notifier is only used on older CPUs without a constant TSC, mucking with the NX hugepage mitigation while VMs are running is very uncommon, and doing so while also onlining/offlining a CPU (necessary to generate contention on cpu_hotplug_lock) would be even more unusual. The most robust solution to the general cpu_hotplug_lock issue is likely to switch vm_list to be an RCU-protected list, e.g. so that x86's cpufreq notifier doesn't to take kvm_lock. For now, settle for fixing the most blatant deadlock, as switching to an RCU-protected list is a much more involved change, but add a comment in locking.rst to call out that care needs to be taken when walking holding kvm_lock and walking vm_list. ====================================================== WARNING: possible circular locking dependency detected 6.10.0-smp--c257535a0c9d-pip torvalds#330 Tainted: G S O ------------------------------------------------------ tee/35048 is trying to acquire lock: ff6a80eced71e0a8 (&kvm->slots_lock){+.+.}-{3:3}, at: set_nx_huge_pages+0x179/0x1e0 [kvm] but task is already holding lock: ffffffffc07abb08 (kvm_lock){+.+.}-{3:3}, at: set_nx_huge_pages+0x14a/0x1e0 [kvm] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (kvm_lock){+.+.}-{3:3}: __mutex_lock+0x6a/0xb40 mutex_lock_nested+0x1f/0x30 kvm_dev_ioctl+0x4fb/0xe50 [kvm] __se_sys_ioctl+0x7b/0xd0 __x64_sys_ioctl+0x21/0x30 x64_sys_call+0x15d0/0x2e60 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #2 (cpu_hotplug_lock){++++}-{0:0}: cpus_read_lock+0x2e/0xb0 static_key_slow_inc+0x16/0x30 kvm_lapic_set_base+0x6a/0x1c0 [kvm] kvm_set_apic_base+0x8f/0xe0 [kvm] kvm_set_msr_common+0x9ae/0xf80 [kvm] vmx_set_msr+0xa54/0xbe0 [kvm_intel] __kvm_set_msr+0xb6/0x1a0 [kvm] kvm_arch_vcpu_ioctl+0xeca/0x10c0 [kvm] kvm_vcpu_ioctl+0x485/0x5b0 [kvm] __se_sys_ioctl+0x7b/0xd0 __x64_sys_ioctl+0x21/0x30 x64_sys_call+0x15d0/0x2e60 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #1 (&kvm->srcu){.+.+}-{0:0}: __synchronize_srcu+0x44/0x1a0 synchronize_srcu_expedited+0x21/0x30 kvm_swap_active_memslots+0x110/0x1c0 [kvm] kvm_set_memslot+0x360/0x620 [kvm] __kvm_set_memory_region+0x27b/0x300 [kvm] kvm_vm_ioctl_set_memory_region+0x43/0x60 [kvm] kvm_vm_ioctl+0x295/0x650 [kvm] __se_sys_ioctl+0x7b/0xd0 __x64_sys_ioctl+0x21/0x30 x64_sys_call+0x15d0/0x2e60 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #0 (&kvm->slots_lock){+.+.}-{3:3}: __lock_acquire+0x15ef/0x2e30 lock_acquire+0xe0/0x260 __mutex_lock+0x6a/0xb40 mutex_lock_nested+0x1f/0x30 set_nx_huge_pages+0x179/0x1e0 [kvm] param_attr_store+0x93/0x100 module_attr_store+0x22/0x40 sysfs_kf_write+0x81/0xb0 kernfs_fop_write_iter+0x133/0x1d0 vfs_write+0x28d/0x380 ksys_write+0x70/0xe0 __x64_sys_write+0x1f/0x30 x64_sys_call+0x281b/0x2e60 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e Cc: Chao Gao <[email protected]> Fixes: 0bf5049 ("KVM: Drop kvm_count_lock and instead protect kvm_usage_count with kvm_lock") Cc: [email protected] Reviewed-by: Kai Huang <[email protected]> Acked-by: Kai Huang <[email protected]> Tested-by: Farrah Chen <[email protected]> Signed-off-by: Sean Christopherson <[email protected]> Message-ID: <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Oct 14, 2024
On the node of an NFS client, some files saved in the mountpoint of the NFS server were copied to another location of the same NFS server. Accidentally, the nfs42_complete_copies() got a NULL-pointer dereference crash with the following syslog: [232064.838881] NFSv4: state recovery failed for open file nfs/pvc-12b5200d-cd0f-46a3-b9f0-af8f4fe0ef64.qcow2, error = -116 [232064.839360] NFSv4: state recovery failed for open file nfs/pvc-12b5200d-cd0f-46a3-b9f0-af8f4fe0ef64.qcow2, error = -116 [232066.588183] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000058 [232066.588586] Mem abort info: [232066.588701] ESR = 0x0000000096000007 [232066.588862] EC = 0x25: DABT (current EL), IL = 32 bits [232066.589084] SET = 0, FnV = 0 [232066.589216] EA = 0, S1PTW = 0 [232066.589340] FSC = 0x07: level 3 translation fault [232066.589559] Data abort info: [232066.589683] ISV = 0, ISS = 0x00000007 [232066.589842] CM = 0, WnR = 0 [232066.589967] user pgtable: 64k pages, 48-bit VAs, pgdp=00002000956ff400 [232066.590231] [0000000000000058] pgd=08001100ae100003, p4d=08001100ae100003, pud=08001100ae100003, pmd=08001100b3c00003, pte=0000000000000000 [232066.590757] Internal error: Oops: 96000007 [#1] SMP [232066.590958] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm vhost_net vhost vhost_iotlb tap tun ipt_rpfilter xt_multiport ip_set_hash_ip ip_set_hash_net xfrm_interface xfrm6_tunnel tunnel4 tunnel6 esp4 ah4 wireguard libcurve25519_generic veth xt_addrtype xt_set nf_conntrack_netlink ip_set_hash_ipportnet ip_set_hash_ipportip ip_set_bitmap_port ip_set_hash_ipport dummy ip_set ip_vs_sh ip_vs_wrr ip_vs_rr ip_vs iptable_filter sch_ingress nfnetlink_cttimeout vport_gre ip_gre ip_tunnel gre vport_geneve geneve vport_vxlan vxlan ip6_udp_tunnel udp_tunnel openvswitch nf_conncount dm_round_robin dm_service_time dm_multipath xt_nat xt_MASQUERADE nft_chain_nat nf_nat xt_mark xt_conntrack xt_comment nft_compat nft_counter nf_tables nfnetlink ocfs2 ocfs2_nodemanager ocfs2_stackglue iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ipmi_ssif nbd overlay 8021q garp mrp bonding tls rfkill sunrpc ext4 mbcache jbd2 [232066.591052] vfat fat cas_cache cas_disk ses enclosure scsi_transport_sas sg acpi_ipmi ipmi_si ipmi_devintf ipmi_msghandler ip_tables vfio_pci vfio_pci_core vfio_virqfd vfio_iommu_type1 vfio dm_mirror dm_region_hash dm_log dm_mod nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter bridge stp llc fuse xfs libcrc32c ast drm_vram_helper qla2xxx drm_kms_helper syscopyarea crct10dif_ce sysfillrect ghash_ce sysimgblt sha2_ce fb_sys_fops cec sha256_arm64 sha1_ce drm_ttm_helper ttm nvme_fc igb sbsa_gwdt nvme_fabrics drm nvme_core i2c_algo_bit i40e scsi_transport_fc megaraid_sas aes_neon_bs [232066.596953] CPU: 6 PID: 4124696 Comm: 10.253.166.125- Kdump: loaded Not tainted 5.15.131-9.cl9_ocfs2.aarch64 #1 [232066.597356] Hardware name: Great Wall .\x93\x8e...RF6260 V5/GWMSSE2GL1T, BIOS T656FBE_V3.0.18 2024-01-06 [232066.597721] pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [232066.598034] pc : nfs4_reclaim_open_state+0x220/0x800 [nfsv4] [232066.598327] lr : nfs4_reclaim_open_state+0x12c/0x800 [nfsv4] [232066.598595] sp : ffff8000f568fc70 [232066.598731] x29: ffff8000f568fc70 x28: 0000000000001000 x27: ffff21003db33000 [232066.599030] x26: ffff800005521ae0 x25: ffff0100f98fa3f0 x24: 0000000000000001 [232066.599319] x23: ffff800009920008 x22: ffff21003db33040 x21: ffff21003db33050 [232066.599628] x20: ffff410172fe9e40 x19: ffff410172fe9e00 x18: 0000000000000000 [232066.599914] x17: 0000000000000000 x16: 0000000000000004 x15: 0000000000000000 [232066.600195] x14: 0000000000000000 x13: ffff800008e685a8 x12: 00000000eac0c6e6 [232066.600498] x11: 0000000000000000 x10: 0000000000000008 x9 : ffff8000054e5828 [232066.600784] x8 : 00000000ffffffbf x7 : 0000000000000001 x6 : 000000000a9eb14a [232066.601062] x5 : 0000000000000000 x4 : ffff70ff8a14a800 x3 : 0000000000000058 [232066.601348] x2 : 0000000000000001 x1 : 54dce46366daa6c6 x0 : 0000000000000000 [232066.601636] Call trace: [232066.601749] nfs4_reclaim_open_state+0x220/0x800 [nfsv4] [232066.601998] nfs4_do_reclaim+0x1b8/0x28c [nfsv4] [232066.602218] nfs4_state_manager+0x928/0x10f0 [nfsv4] [232066.602455] nfs4_run_state_manager+0x78/0x1b0 [nfsv4] [232066.602690] kthread+0x110/0x114 [232066.602830] ret_from_fork+0x10/0x20 [232066.602985] Code: 1400000d f9403f20 f9402e61 91016003 (f9402c00) [232066.603284] SMP: stopping secondary CPUs [232066.606936] Starting crashdump kernel... [232066.607146] Bye! Analysing the vmcore, we know that nfs4_copy_state listed by destination nfs_server->ss_copies was added by the field copies in handle_async_copy(), and we found a waiting copy process with the stack as: PID: 3511963 TASK: ffff710028b47e00 CPU: 0 COMMAND: "cp" #0 [ffff8001116ef740] __switch_to at ffff8000081b92f4 #1 [ffff8001116ef760] __schedule at ffff800008dd0650 #2 [ffff8001116ef7c0] schedule at ffff800008dd0a00 #3 [ffff8001116ef7e0] schedule_timeout at ffff800008dd6aa0 #4 [ffff8001116ef860] __wait_for_common at ffff800008dd166c #5 [ffff8001116ef8e0] wait_for_completion_interruptible at ffff800008dd1898 #6 [ffff8001116ef8f0] handle_async_copy at ffff8000055142f4 [nfsv4] #7 [ffff8001116ef970] _nfs42_proc_copy at ffff8000055147c8 [nfsv4] #8 [ffff8001116efa80] nfs42_proc_copy at ffff800005514cf0 [nfsv4] #9 [ffff8001116efc50] __nfs4_copy_file_range.constprop.0 at ffff8000054ed694 [nfsv4] The NULL-pointer dereference was due to nfs42_complete_copies() listed the nfs_server->ss_copies by the field ss_copies of nfs4_copy_state. So the nfs4_copy_state address ffff0100f98fa3f0 was offset by 0x10 and the data accessed through this pointer was also incorrect. Generally, the ordered list nfs4_state_owner->so_states indicate open(O_RDWR) or open(O_WRITE) states are reclaimed firstly by nfs4_reclaim_open_state(). When destination state reclaim is failed with NFS_STATE_RECOVERY_FAILED and copies are not deleted in nfs_server->ss_copies, the source state may be passed to the nfs42_complete_copies() process earlier, resulting in this crash scene finally. To solve this issue, we add a list_head nfs_server->ss_src_copies for a server-to-server copy specially. Fixes: 0e65a32 ("NFS: handle source server reboot") Signed-off-by: Yanjun Zhang <[email protected]> Reviewed-by: Trond Myklebust <[email protected]> Signed-off-by: Anna Schumaker <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Oct 17, 2024
…ation When testing the XDP_REDIRECT function on the LS1028A platform, we found a very reproducible issue that the Tx frames can no longer be sent out even if XDP_REDIRECT is turned off. Specifically, if there is a lot of traffic on Rx direction, when XDP_REDIRECT is turned on, the console may display some warnings like "timeout for tx ring #6 clear", and all redirected frames will be dropped, the detailed log is as follows. root@ls1028ardb:~# ./xdp-bench redirect eno0 eno2 Redirecting from eno0 (ifindex 3; driver fsl_enetc) to eno2 (ifindex 4; driver fsl_enetc) [203.849809] fsl_enetc 0000:00:00.2 eno2: timeout for tx ring #5 clear [204.006051] fsl_enetc 0000:00:00.2 eno2: timeout for tx ring #6 clear [204.161944] fsl_enetc 0000:00:00.2 eno2: timeout for tx ring #7 clear eno0->eno2 1420505 rx/s 1420590 err,drop/s 0 xmit/s xmit eno0->eno2 0 xmit/s 1420590 drop/s 0 drv_err/s 15.71 bulk-avg eno0->eno2 1420484 rx/s 1420485 err,drop/s 0 xmit/s xmit eno0->eno2 0 xmit/s 1420485 drop/s 0 drv_err/s 15.71 bulk-avg By analyzing the XDP_REDIRECT implementation of enetc driver, the driver will reconfigure Tx and Rx BD rings when a bpf program is installed or uninstalled, but there is no mechanisms to block the redirected frames when enetc driver reconfigures rings. Similarly, XDP_TX verdicts on received frames can also lead to frames being enqueued in the Tx rings. Because XDP ignores the state set by the netif_tx_wake_queue() API, so introduce the ENETC_TX_DOWN flag to suppress transmission of XDP frames. Fixes: c33bfaf ("net: enetc: set up XDP program under enetc_reconfigure()") Cc: [email protected] Signed-off-by: Wei Fang <[email protected]> Reviewed-by: Vladimir Oltean <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Oct 17, 2024
The Tx BD rings are disabled first in enetc_stop() and the driver waits for them to become empty. This operation is not safe while the ring is actively transmitting frames, and will cause the ring to not be empty and hardware exception. As described in the NETC block guide, software should only disable an active Tx ring after all pending ring entries have been consumed (i.e. when PI = CI). Disabling a transmit ring that is actively processing BDs risks a HW-SW race hazard whereby a hardware resource becomes assigned to work on one or more ring entries only to have those entries be removed due to the ring becoming disabled. When testing XDP_REDIRECT feautre, although all frames were blocked from being put into Tx rings during ring reconfiguration, the similar warning log was still encountered: fsl_enetc 0000:00:00.2 eno2: timeout for tx ring #6 clear fsl_enetc 0000:00:00.2 eno2: timeout for tx ring #7 clear The reason is that when there are still unsent frames in the Tx ring, disabling the Tx ring causes the remaining frames to be unable to be sent out. And the Tx ring cannot be restored, which means that even if the xdp program is uninstalled, the Tx frames cannot be sent out anymore. Therefore, correct the operation order in enect_start() and enect_stop(). Fixes: ff58fda ("net: enetc: prioritize ability to go down over packet processing") Cc: [email protected] Signed-off-by: Wei Fang <[email protected]> Reviewed-by: Vladimir Oltean <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Nov 26, 2024
Patch series "Improve the copy of task comm", v8. Using {memcpy,strncpy,strcpy,kstrdup} to copy the task comm relies on the length of task comm. Changes in the task comm could result in a destination string that is overflow. Therefore, we should explicitly ensure the destination string is always NUL-terminated, regardless of the task comm. This approach will facilitate future extensions to the task comm. As suggested by Linus [0], we can identify all relevant code with the following git grep command: git grep 'memcpy.*->comm\>' git grep 'kstrdup.*->comm\>' git grep 'strncpy.*->comm\>' git grep 'strcpy.*->comm\>' PATCH #2~#4: memcpy PATCH #5~#6: kstrdup PATCH #7: strcpy Please note that strncpy() is not included in this series as it is being tracked by another effort. [1] This patch (of 7): We want to eliminate the use of __get_task_comm() for the following reasons: - The task_lock() is unnecessary Quoted from Linus [0]: : Since user space can randomly change their names anyway, using locking : was always wrong for readers (for writers it probably does make sense : to have some lock - although practically speaking nobody cares there : either, but at least for a writer some kind of race could have : long-term mixed results Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Link: https://lore.kernel.org/all/CAHk-=wivfrF0_zvf+oj6==Sh=-npJooP8chLPEfaFV0oNYTTBA@mail.gmail.com [0] Link: https://lore.kernel.org/all/CAHk-=whWtUC-AjmGJveAETKOMeMFSTwKwu99v7+b6AyHMmaDFA@mail.gmail.com/ Link: https://lore.kernel.org/all/CAHk-=wjAmmHUg6vho1KjzQi2=psR30+CogFd4aXrThr2gsiS4g@mail.gmail.com/ [0] Link: KSPP#90 [1] Signed-off-by: Yafang Shao <[email protected]> Suggested-by: Linus Torvalds <[email protected]> Cc: Alexander Viro <[email protected]> Cc: Christian Brauner <[email protected]> Cc: Jan Kara <[email protected]> Cc: Eric Biederman <[email protected]> Cc: Kees Cook <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Matus Jokay <[email protected]> Cc: Alejandro Colomar <[email protected]> Cc: "Serge E. Hallyn" <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Justin Stitt <[email protected]> Cc: Steven Rostedt (Google) <[email protected]> Cc: Tetsuo Handa <[email protected]> Cc: Andy Shevchenko <[email protected]> Cc: Daniel Vetter <[email protected]> Cc: David Airlie <[email protected]> Cc: Eric Paris <[email protected]> Cc: James Morris <[email protected]> Cc: Maarten Lankhorst <[email protected]> Cc: Matthew Wilcox <[email protected]> Cc: Maxime Ripard <[email protected]> Cc: Ondrej Mosnacek <[email protected]> Cc: Paul Moore <[email protected]> Cc: Quentin Monnet <[email protected]> Cc: Simon Horman <[email protected]> Cc: Stephen Smalley <[email protected]> Cc: Thomas Zimmermann <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
kdave
pushed a commit
that referenced
this pull request
Dec 2, 2024
BUG: KASAN: slab-use-after-free in tcp_write_timer_handler+0x156/0x3e0 Read of size 1 at addr ffff888111f322cd by task swapper/0/0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc4-dirty #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 Call Trace: <IRQ> dump_stack_lvl+0x68/0xa0 print_address_description.constprop.0+0x2c/0x3d0 print_report+0xb4/0x270 kasan_report+0xbd/0xf0 tcp_write_timer_handler+0x156/0x3e0 tcp_write_timer+0x66/0x170 call_timer_fn+0xfb/0x1d0 __run_timers+0x3f8/0x480 run_timer_softirq+0x9b/0x100 handle_softirqs+0x153/0x390 __irq_exit_rcu+0x103/0x120 irq_exit_rcu+0xe/0x20 sysvec_apic_timer_interrupt+0x76/0x90 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:default_idle+0xf/0x20 Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 66 90 0f 00 2d 33 f8 25 00 fb f4 <fa> c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 RSP: 0018:ffffffffa2007e28 EFLAGS: 00000242 RAX: 00000000000f3b31 RBX: 1ffffffff4400fc7 RCX: ffffffffa09c3196 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff9f00590f RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed102360835d R10: ffff88811b041aeb R11: 0000000000000001 R12: 0000000000000000 R13: ffffffffa202d7c0 R14: 0000000000000000 R15: 00000000000147d0 default_idle_call+0x6b/0xa0 cpuidle_idle_call+0x1af/0x1f0 do_idle+0xbc/0x130 cpu_startup_entry+0x33/0x40 rest_init+0x11f/0x210 start_kernel+0x39a/0x420 x86_64_start_reservations+0x18/0x30 x86_64_start_kernel+0x97/0xa0 common_startup_64+0x13e/0x141 </TASK> Allocated by task 595: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x87/0x90 kmem_cache_alloc_noprof+0x12b/0x3f0 copy_net_ns+0x94/0x380 create_new_namespaces+0x24c/0x500 unshare_nsproxy_namespaces+0x75/0xf0 ksys_unshare+0x24e/0x4f0 __x64_sys_unshare+0x1f/0x30 do_syscall_64+0x70/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 100: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x54/0x70 kmem_cache_free+0x156/0x5d0 cleanup_net+0x5d3/0x670 process_one_work+0x776/0xa90 worker_thread+0x2e2/0x560 kthread+0x1a8/0x1f0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 Reproduction script: mkdir -p /mnt/nfsshare mkdir -p /mnt/nfs/netns_1 mkfs.ext4 /dev/sdb mount /dev/sdb /mnt/nfsshare systemctl restart nfs-server chmod 777 /mnt/nfsshare exportfs -i -o rw,no_root_squash *:/mnt/nfsshare ip netns add netns_1 ip link add name veth_1_peer type veth peer veth_1 ifconfig veth_1_peer 11.11.0.254 up ip link set veth_1 netns netns_1 ip netns exec netns_1 ifconfig veth_1 11.11.0.1 ip netns exec netns_1 /root/iptables -A OUTPUT -d 11.11.0.254 -p tcp \ --tcp-flags FIN FIN -j DROP (note: In my environment, a DESTROY_CLIENTID operation is always sent immediately, breaking the nfs tcp connection.) ip netns exec netns_1 timeout -s 9 300 mount -t nfs -o proto=tcp,vers=4.1 \ 11.11.0.254:/mnt/nfsshare /mnt/nfs/netns_1 ip netns del netns_1 The reason here is that the tcp socket in netns_1 (nfs side) has been shutdown and closed (done in xs_destroy), but the FIN message (with ack) is discarded, and the nfsd side keeps sending retransmission messages. As a result, when the tcp sock in netns_1 processes the received message, it sends the message (FIN message) in the sending queue, and the tcp timer is re-established. When the network namespace is deleted, the net structure accessed by tcp's timer handler function causes problems. To fix this problem, let's hold netns refcnt for the tcp kernel socket as done in other modules. This is an ugly hack which can easily be backported to earlier kernels. A proper fix which cleans up the interfaces will follow, but may not be so easy to backport. Fixes: 26abe14 ("net: Modify sk_alloc to not reference count the netns of kernel sockets.") Signed-off-by: Liu Jian <[email protected]> Acked-by: Jeff Layton <[email protected]> Reviewed-by: Kuniyuki Iwashima <[email protected]> Signed-off-by: Trond Myklebust <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.