Skip to content

Commit

Permalink
[SPARK-7949] [MLLIB] [DOC] update document with some missing save/load
Browse files Browse the repository at this point in the history
add save load for examples:
KMeansModel
PowerIterationClusteringModel
Word2VecModel
IsotonicRegressionModel

Author: Yuhao Yang <[email protected]>

Closes apache#6498 from hhbyyh/docSaveLoad and squashes the following commits:

7f9f06d [Yuhao Yang] add missing imports
c604cad [Yuhao Yang] Merge remote-tracking branch 'upstream/master' into docSaveLoad
1dd77cc [Yuhao Yang] update document with some missing save/load
  • Loading branch information
hhbyyh authored and jkbradley committed May 31, 2015
1 parent e1067d0 commit 0674700
Show file tree
Hide file tree
Showing 3 changed files with 38 additions and 6 deletions.
28 changes: 24 additions & 4 deletions docs/mllib-clustering.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasin
optimal *k* is usually one where there is an "elbow" in the WSSSE graph.

{% highlight scala %}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data
Expand All @@ -62,6 +62,10 @@ val clusters = KMeans.train(parsedData, numClusters, numIterations)
// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)

// Save and load model
clusters.save(sc, "myModelPath")
val sameModel = KMeansModel.load(sc, "myModelPath")
{% endhighlight %}
</div>

Expand Down Expand Up @@ -110,6 +114,10 @@ public class KMeansExample {
// Evaluate clustering by computing Within Set Sum of Squared Errors
double WSSSE = clusters.computeCost(parsedData.rdd());
System.out.println("Within Set Sum of Squared Errors = " + WSSSE);

// Save and load model
clusters.save(sc.sc(), "myModelPath");
KMeansModel sameModel = KMeansModel.load(sc.sc(), "myModelPath");
}
}
{% endhighlight %}
Expand All @@ -124,7 +132,7 @@ Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by in
fact the optimal *k* is usually one where there is an "elbow" in the WSSSE graph.

{% highlight python %}
from pyspark.mllib.clustering import KMeans
from pyspark.mllib.clustering import KMeans, KMeansModel
from numpy import array
from math import sqrt

Expand All @@ -143,6 +151,10 @@ def error(point):

WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y)
print("Within Set Sum of Squared Error = " + str(WSSSE))

# Save and load model
clusters.save(sc, "myModelPath")
sameModel = KMeansModel.load(sc, "myModelPath")
{% endhighlight %}
</div>

Expand Down Expand Up @@ -312,19 +324,23 @@ Calling `PowerIterationClustering.run` returns a
which contains the computed clustering assignments.

{% highlight scala %}
import org.apache.spark.mllib.clustering.PowerIterationClustering
import org.apache.spark.mllib.clustering.{PowerIterationClustering, PowerIterationClusteringModel}
import org.apache.spark.mllib.linalg.Vectors

val similarities: RDD[(Long, Long, Double)] = ...

val pic = new PowerIteartionClustering()
val pic = new PowerIterationClustering()
.setK(3)
.setMaxIterations(20)
val model = pic.run(similarities)

model.assignments.foreach { a =>
println(s"${a.id} -> ${a.cluster}")
}

// Save and load model
model.save(sc, "myModelPath")
val sameModel = PowerIterationClusteringModel.load(sc, "myModelPath")
{% endhighlight %}

A full example that produces the experiment described in the PIC paper can be found under
Expand Down Expand Up @@ -360,6 +376,10 @@ PowerIterationClusteringModel model = pic.run(similarities);
for (PowerIterationClustering.Assignment a: model.assignments().toJavaRDD().collect()) {
System.out.println(a.id() + " -> " + a.cluster());
}

// Save and load model
model.save(sc.sc(), "myModelPath");
PowerIterationClusteringModel sameModel = PowerIterationClusteringModel.load(sc.sc(), "myModelPath");
{% endhighlight %}
</div>

Expand Down
6 changes: 5 additions & 1 deletion docs/mllib-feature-extraction.md
Original file line number Diff line number Diff line change
Expand Up @@ -188,7 +188,7 @@ Here we assume the extracted file is `text8` and in same directory as you run th
import org.apache.spark._
import org.apache.spark.rdd._
import org.apache.spark.SparkContext._
import org.apache.spark.mllib.feature.Word2Vec
import org.apache.spark.mllib.feature.{Word2Vec, Word2VecModel}

val input = sc.textFile("text8").map(line => line.split(" ").toSeq)

Expand All @@ -201,6 +201,10 @@ val synonyms = model.findSynonyms("china", 40)
for((synonym, cosineSimilarity) <- synonyms) {
println(s"$synonym $cosineSimilarity")
}

// Save and load model
model.save(sc, "myModelPath")
val sameModel = Word2VecModel.load(sc, "myModelPath")
{% endhighlight %}
</div>
<div data-lang="python">
Expand Down
10 changes: 9 additions & 1 deletion docs/mllib-isotonic-regression.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ Model is created using the training set and a mean squared error is calculated f
labels and real labels in the test set.

{% highlight scala %}
import org.apache.spark.mllib.regression.IsotonicRegression
import org.apache.spark.mllib.regression.{IsotonicRegression, IsotonicRegressionModel}

val data = sc.textFile("data/mllib/sample_isotonic_regression_data.txt")

Expand Down Expand Up @@ -88,6 +88,10 @@ val predictionAndLabel = test.map { point =>
// Calculate mean squared error between predicted and real labels.
val meanSquaredError = predictionAndLabel.map{case(p, l) => math.pow((p - l), 2)}.mean()
println("Mean Squared Error = " + meanSquaredError)

// Save and load model
model.save(sc, "myModelPath")
val sameModel = IsotonicRegressionModel.load(sc, "myModelPath")
{% endhighlight %}
</div>

Expand Down Expand Up @@ -150,6 +154,10 @@ Double meanSquaredError = new JavaDoubleRDD(predictionAndLabel.map(
).rdd()).mean();

System.out.println("Mean Squared Error = " + meanSquaredError);

// Save and load model
model.save(sc.sc(), "myModelPath");
IsotonicRegressionModel sameModel = IsotonicRegressionModel.load(sc.sc(), "myModelPath");
{% endhighlight %}
</div>
</div>

0 comments on commit 0674700

Please sign in to comment.