-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
LLM: add fuse optimization for Mistral. (#9184)
* add fuse optimization for mistral. * fix. * fix * fix style. * fix. * fix error. * fix style. * fix style.
- Loading branch information
1 parent
99513d2
commit 991a747
Showing
3 changed files
with
160 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
148 changes: 148 additions & 0 deletions
148
python/llm/src/bigdl/llm/transformers/models/mistral.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# Some parts of this file is adapted from | ||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mistral/modeling_mistral.py | ||
# | ||
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | ||
# and OPT implementations in this library. It has been modified from its | ||
# original forms to accommodate minor architectural differences compared | ||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" PyTorch Mistral model.""" | ||
import math | ||
from typing import Optional, Tuple | ||
|
||
import torch | ||
from torch import nn | ||
from bigdl.llm.utils.common import invalidInputError | ||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\ | ||
apply_rotary_pos_emb_no_cache_xpu | ||
|
||
|
||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | ||
""" | ||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). | ||
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) | ||
to (batch, num_attention_heads, seqlen, head_dim) | ||
""" | ||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | ||
if n_rep == 1: | ||
return hidden_states | ||
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, | ||
n_rep, slen, head_dim) | ||
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | ||
|
||
|
||
def mistral_attention_forward( | ||
self, | ||
hidden_states: torch.Tensor, | ||
attention_mask: Optional[torch.Tensor]=None, | ||
position_ids: Optional[torch.LongTensor]=None, | ||
past_key_value: Optional[Tuple[torch.Tensor]]=None, | ||
output_attentions: bool=False, | ||
use_cache: bool=False, | ||
padding_mask: Optional[torch.Tensor]=None, | ||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | ||
bsz, q_len, _ = hidden_states.size() | ||
|
||
query_states = self.q_proj(hidden_states) | ||
key_states = self.k_proj(hidden_states) | ||
value_states = self.v_proj(hidden_states) | ||
|
||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | ||
key_states = key_states.view(bsz, q_len, | ||
self.num_key_value_heads, self.head_dim).transpose(1, 2) | ||
value_states = value_states.view(bsz, q_len, | ||
self.num_key_value_heads, self.head_dim).transpose(1, 2) | ||
|
||
kv_seq_len = key_states.shape[-2] | ||
if past_key_value is not None: | ||
kv_seq_len += past_key_value[0].shape[-2] | ||
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad): | ||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, | ||
key_states, | ||
position_ids, | ||
"mistral") | ||
else: | ||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | ||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, | ||
cos, sin, position_ids, "mistral") | ||
|
||
if past_key_value is not None: | ||
# reuse k, v, self_attention | ||
key_states = torch.cat([past_key_value[0], key_states], dim=2) | ||
value_states = torch.cat([past_key_value[1], value_states], dim=2) | ||
|
||
past_key_value = (key_states, value_states) if use_cache else None | ||
|
||
# repeat k/v heads if n_kv_heads < n_heads | ||
key_states = repeat_kv(key_states, self.num_key_value_groups) | ||
value_states = repeat_kv(value_states, self.num_key_value_groups) | ||
|
||
attn_weights = torch.matmul( | ||
query_states, | ||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | ||
|
||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | ||
invalidInputError( | ||
False, | ||
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}," | ||
f" but is {attn_weights.size()}" | ||
) | ||
|
||
if attention_mask is not None: | ||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | ||
invalidInputError( | ||
False, | ||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}," | ||
f" but is {attention_mask.size()}" | ||
) | ||
|
||
attn_weights = attn_weights + attention_mask | ||
|
||
# upcast attention to fp32 | ||
attn_weights = nn.functional.\ | ||
softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | ||
attn_output = torch.matmul(attn_weights, value_states) | ||
|
||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | ||
invalidInputError( | ||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}," | ||
f" but is {attn_output.size()}" | ||
) | ||
|
||
attn_output = attn_output.transpose(1, 2).contiguous() | ||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | ||
|
||
attn_output = self.o_proj(attn_output) | ||
|
||
if not output_attentions: | ||
attn_weights = None | ||
|
||
return attn_output, attn_weights, past_key_value |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters