Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: add code snippets for explore query result page #278

Merged
merged 2 commits into from
Dec 15, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 70 additions & 0 deletions samples/snippets/explore_query_result_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


def test_bigquery_dataframes_explore_query_result():
import bigframes.pandas as bpd

# [START bigquery_dataframes_explore_query_result]
# Load data from BigQuery
query_or_table = "bigquery-public-data.ml_datasets.penguins"
bq_df = bpd.read_gbq(query_or_table)

# Inspect one of the columns (or series) of the DataFrame:
bq_df["body_mass_g"]

# Compute the mean of this series:
average_body_mass = bq_df["body_mass_g"].mean()
print(f"average_body_mass: {average_body_mass}")

# Find the heaviest species using the groupby operation to calculate the
# mean body_mass_g:
(
bq_df["body_mass_g"]
.groupby(by=bq_df["species"])
.mean()
.sort_values(ascending=False)
.head(10)
)

# Create the Linear Regression model
from bigframes.ml.linear_model import LinearRegression

# Filter down to the data we want to analyze
adelie_data = bq_df[bq_df.species == "Adelie Penguin (Pygoscelis adeliae)"]

# Drop the columns we don't care about
adelie_data = adelie_data.drop(columns=["species"])

# Drop rows with nulls to get our training data
training_data = adelie_data.dropna()

# Pick feature columns and label column
X = training_data[
[
"island",
"culmen_length_mm",
"culmen_depth_mm",
"flipper_length_mm",
"sex",
]
]
y = training_data[["body_mass_g"]]

model = LinearRegression(fit_intercept=False)
model.fit(X, y)
model.score(X, y)
# [END bigquery_dataframes_explore_query_result]
assert average_body_mass is not None
assert model is not None