-
Notifications
You must be signed in to change notification settings - Fork 42
/
explore_query_result_test.py
70 lines (58 loc) · 2.2 KB
/
explore_query_result_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def test_bigquery_dataframes_explore_query_result():
import bigframes.pandas as bpd
# [START bigquery_dataframes_explore_query_result]
# Load data from BigQuery
query_or_table = "bigquery-public-data.ml_datasets.penguins"
bq_df = bpd.read_gbq(query_or_table)
# Inspect one of the columns (or series) of the DataFrame:
bq_df["body_mass_g"]
# Compute the mean of this series:
average_body_mass = bq_df["body_mass_g"].mean()
print(f"average_body_mass: {average_body_mass}")
# Find the heaviest species using the groupby operation to calculate the
# mean body_mass_g:
(
bq_df["body_mass_g"]
.groupby(by=bq_df["species"])
.mean()
.sort_values(ascending=False)
.head(10)
)
# Create the Linear Regression model
from bigframes.ml.linear_model import LinearRegression
# Filter down to the data we want to analyze
adelie_data = bq_df[bq_df.species == "Adelie Penguin (Pygoscelis adeliae)"]
# Drop the columns we don't care about
adelie_data = adelie_data.drop(columns=["species"])
# Drop rows with nulls to get our training data
training_data = adelie_data.dropna()
# Pick feature columns and label column
X = training_data[
[
"island",
"culmen_length_mm",
"culmen_depth_mm",
"flipper_length_mm",
"sex",
]
]
y = training_data[["body_mass_g"]]
model = LinearRegression(fit_intercept=False)
model.fit(X, y)
model.score(X, y)
# [END bigquery_dataframes_explore_query_result]
assert average_body_mass is not None
assert model is not None