Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: re-arrange describe() logic into two helper methods #1005

Merged
merged 3 commits into from
Sep 24, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 35 additions & 39 deletions bigframes/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -2303,52 +2303,19 @@ def melt(
self._block.melt(id_col_ids, val_col_ids, var_name, value_name)
)

_NUMERIC_DESCRIBE_AGGS = (
"count",
"mean",
"std",
"min",
"25%",
"50%",
"75%",
"max",
)
_NON_NUMERIC_DESCRIBE_AGGS = ("count", "nunique")

def describe(self, include: None | Literal["all"] = None) -> DataFrame:

allowed_non_numeric_types = {
bigframes.dtypes.STRING_DTYPE,
bigframes.dtypes.BOOL_DTYPE,
bigframes.dtypes.BYTES_DTYPE,
}

if include is None:
numeric_df = self._drop_non_numeric(permissive=False)
if len(numeric_df.columns) == 0:
# Describe eligible non-numeric columns
result = self.select_dtypes(include=allowed_non_numeric_types).agg(
self._NON_NUMERIC_DESCRIBE_AGGS
)
else:
# Otherwise, only describe numeric columns
result = numeric_df.agg(self._NUMERIC_DESCRIBE_AGGS)
return typing.cast(DataFrame, result)
return self._describe_non_numeric()

elif include == "all":
numeric_result = typing.cast(
DataFrame,
self._drop_non_numeric(permissive=False).agg(
self._NUMERIC_DESCRIBE_AGGS
),
)
# Otherwise, only describe numeric columns
return self._describe_numeric()

non_numeric_result = typing.cast(
DataFrame,
self.select_dtypes(include=allowed_non_numeric_types).agg(
self._NON_NUMERIC_DESCRIBE_AGGS
),
)
elif include == "all":
numeric_result = self._describe_numeric()
non_numeric_result = self._describe_non_numeric()

if len(numeric_result.columns) == 0:
return non_numeric_result
Expand All @@ -2365,6 +2332,35 @@ def describe(self, include: None | Literal["all"] = None) -> DataFrame:
else:
raise ValueError(f"Unsupported include type: {include}")

def _describe_numeric(self) -> DataFrame:
return typing.cast(
DataFrame,
self._drop_non_numeric(permissive=False).agg(
[
"count",
"mean",
"std",
"min",
"25%",
"50%",
"75%",
"max",
]
),
)

def _describe_non_numeric(self) -> DataFrame:
return typing.cast(
DataFrame,
self.select_dtypes(
include={
bigframes.dtypes.STRING_DTYPE,
bigframes.dtypes.BOOL_DTYPE,
bigframes.dtypes.BYTES_DTYPE,
}
).agg(["count", "nunique"]),
)

def skew(self, *, numeric_only: bool = False):
if not numeric_only:
frame = self._raise_on_non_numeric("skew")
Expand Down