Skip to content

Commit

Permalink
✨ Add support for pfid megacomplex (#1510)
Browse files Browse the repository at this point in the history
The `PFIDMegacomplex` is a megacomplex used for fitting perturbed free induction decay as described in Hamm 1995: https://doi.org/10.1016/0301-0104(95)00262-6

*👌 Guard against zero standard errors for fixed parameters
*🧪👌 Add irf attribute to PFIDDatasetModel and update pfid unit tests
- OneOscillationWithIrf
- OneOscillationWithSequentialModel
* ♻️Refactor pfid_megacomplex to be always index dependent
* 📚 Added change to changelog
* 🩹 Modify unit test to be more suspectiable to orderin bug (fixed in PR #1512 )
* 🧪 Added test to catch AttributeError validating bad pfid model definition
* 🩹 Fix AttributeError validating bad pfid model definition
* 🧰 Remove pre-commit from dev dependencies


Co-authored-by: Sebastian Weigand <[email protected]>
Co-authored-by: Jörn Weißenborn <[email protected]>
Co-authored-by: Ivo van Stokkum <[email protected]>
  • Loading branch information
4 people authored Aug 23, 2024
1 parent 96bb57d commit 8da51b9
Show file tree
Hide file tree
Showing 7 changed files with 651 additions and 1 deletion.
1 change: 1 addition & 0 deletions changelog.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
### ✨ Features

- ✨ Add official Python 3.12 support (#1437)
- ✨ Add support for pfid megacomplex (#1510)

### 🩹 Bug fixes

Expand Down
1 change: 1 addition & 0 deletions glotaran/builtin/megacomplexes/pfid/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from glotaran.builtin.megacomplexes.pfid.pfid_megacomplex import PFIDMegacomplex
273 changes: 273 additions & 0 deletions glotaran/builtin/megacomplexes/pfid/pfid_megacomplex.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,273 @@
from __future__ import annotations

from typing import TYPE_CHECKING

import numpy as np
import xarray as xr
from scipy.special import erf

from glotaran.builtin.megacomplexes.decay.irf import Irf
from glotaran.builtin.megacomplexes.decay.irf import IrfMultiGaussian
from glotaran.model import DatasetModel
from glotaran.model import ItemIssue
from glotaran.model import Megacomplex
from glotaran.model import Model
from glotaran.model import ModelItemType
from glotaran.model import ParameterType
from glotaran.model import attribute
from glotaran.model import item
from glotaran.model import megacomplex

if TYPE_CHECKING:
from glotaran.parameter import Parameters
from glotaran.typing.types import ArrayLike


class OscillationParameterIssue(ItemIssue):
def __init__(self, label: str, len_labels: int, len_frequencies: int, len_rates: int):
self.label = label
self.len_labels = len_labels
self.len_frequencies = len_frequencies
self.len_rates = len_rates

def to_string(self) -> str:
return (
f"The size of labels ({self.len_labels}), frequencies ({self.len_frequencies}), "
f"and rates ({self.len_rates}) does not match for pfid "
f"megacomplex '{self.label}'."
)


def validate_pfid_parameter(
labels: list[str],
pfid: PFIDMegacomplex,
model: Model,
parameters: Parameters | None,
) -> list[ItemIssue]:
issues = []

len_labels, len_frequencies, len_rates = (
len(pfid.labels),
len(pfid.frequencies),
len(pfid.rates),
)

if len({len_labels, len_frequencies, len_rates}) > 1:
issues.append(
OscillationParameterIssue(pfid.label, len_labels, len_frequencies, len_rates)
)

return issues


@item
class PFIDDatasetModel(DatasetModel):
spectral_axis_inverted: bool = False
spectral_axis_scale: float = 1
irf: ModelItemType[Irf] | None = None


@megacomplex(dataset_model_type=PFIDDatasetModel)
class PFIDMegacomplex(Megacomplex):
dimension: str = "time"
type: str = "pfid"
labels: list[str] = attribute(validator=validate_pfid_parameter)
frequencies: list[ParameterType] # omega_a
rates: list[ParameterType] # 1/T2

def calculate_matrix(
self,
dataset_model: DatasetModel,
global_axis: ArrayLike,
model_axis: ArrayLike,
**kwargs,
):
clp_label = [f"{label}_cos" for label in self.labels] + [
f"{label}_sin" for label in self.labels
]

frequencies = np.array(self.frequencies)
rates = np.array(self.rates)

if dataset_model.spectral_axis_inverted:
frequencies = dataset_model.spectral_axis_scale / frequencies
elif dataset_model.spectral_axis_scale != 1:
frequencies = frequencies * dataset_model.spectral_axis_scale

irf = dataset_model.irf
matrix_shape = (global_axis.size, model_axis.size, len(clp_label))
matrix = np.zeros(matrix_shape, dtype=np.float64)

if irf is None:
msg = "IRF is required for PFID megacomplex"
raise ValueError(msg)
if isinstance(irf, IrfMultiGaussian):
for i in range(global_axis.size):
calculate_pfid_matrix_gaussian_irf_on_index(
matrix[i],
frequencies,
rates,
irf,
i,
global_axis,
model_axis,
)
else:
msg = "IRF should be instance of IrfMultiGaussian"
raise ValueError(msg)
return clp_label, matrix

def finalize_data(
self,
dataset_model: DatasetModel,
dataset: xr.Dataset,
is_full_model: bool = False,
as_global: bool = False,
):
if is_full_model:
return

megacomplexes = (
dataset_model.global_megacomplex if is_full_model else dataset_model.megacomplex
)
unique = len([m for m in megacomplexes if isinstance(m, PFIDMegacomplex)]) < 2

prefix = "pfid" if unique else f"{self.label}_pfid"

dataset.coords[f"{prefix}"] = self.labels
dataset.coords[f"{prefix}_frequency"] = (prefix, self.frequencies)
dataset.coords[f"{prefix}_rate"] = (prefix, self.rates)

model_dimension = dataset.attrs["model_dimension"]
global_dimension = dataset.attrs["global_dimension"]
dim1 = dataset.coords[global_dimension].size
dim2 = len(self.labels)
pfid = np.zeros((dim1, dim2), dtype=np.float64)
phase = np.zeros((dim1, dim2), dtype=np.float64)

for i, label in enumerate(self.labels):
sin = dataset.clp.sel(clp_label=f"{label}_sin")
cos = dataset.clp.sel(clp_label=f"{label}_cos")
pfid[:, i] = np.sqrt(sin * sin + cos * cos)
phase[:, i] = np.unwrap(np.arctan2(sin, cos))

dataset[f"{prefix}_associated_spectra"] = (
(global_dimension, prefix),
pfid,
)

dataset[f"{prefix}_phase"] = (
(global_dimension, prefix),
phase,
)

dataset[f"{prefix}_sin"] = (
(
global_dimension,
model_dimension,
prefix,
),
dataset.matrix.sel(clp_label=[f"{label}_sin" for label in self.labels]).to_numpy(),
)

dataset[f"{prefix}_cos"] = (
(
global_dimension,
model_dimension,
prefix,
),
dataset.matrix.sel(clp_label=[f"{label}_cos" for label in self.labels]).to_numpy(),
)


def calculate_pfid_matrix_gaussian_irf_on_index(
matrix: ArrayLike,
frequencies: ArrayLike,
rates: ArrayLike,
irf: IrfMultiGaussian,
global_index: int | None,
global_axis: ArrayLike,
model_axis: ArrayLike,
):
centers, widths, scales, shift, _, _ = irf.parameter(global_index, global_axis)
for center, width, scale in zip(centers, widths, scales, strict=True):
matrix += calculate_pfid_matrix_gaussian_irf(
frequencies,
rates,
model_axis,
center,
width,
shift,
scale,
global_axis[global_index],
)
matrix /= np.sum(scales)


def calculate_pfid_matrix_gaussian_irf(
frequencies: np.ndarray,
rates: np.ndarray,
model_axis: np.ndarray,
center: float,
width: float,
shift: float,
scale: float,
global_axis_value: float,
):
"""Calculate the damped oscillation matrix taking into account a gaussian irf.
Parameters
----------
frequencies : np.ndarray
an array of frequencies in THz, one per oscillation
rates : np.ndarray
an array of dephasing rates (negative), one per oscillation
model_axis : np.ndarray
the model axis (time)
center : float
the center of the gaussian IRF
width : float
the width (σ) parameter of the the IRF
shift : float
a shift parameter per item on the global axis
scale : float
the scale parameter to scale the matrix by
Returns
-------
np.ndarray
An array of the real and imaginary part of the oscillation matrix,
the shape being (len(model_axis), len(frequencies)).
"""
shifted_axis = model_axis - center - shift
# For calculations using the negative rates we use the time axis
# from the beginning up to 5 σ from the irf center
# this is to guard again overflows
left_shifted_axis_indices = np.where(shifted_axis < 5 * width)[0]
left_shifted_axis = shifted_axis[left_shifted_axis_indices]
neg_idx = np.where(rates < 0)[0]

# c multiply by 0.03 to convert wavenumber (cm-1) to frequency (THz)
# where 0.03 is the product of speed of light 3*10**10 cm/s and time-unit ps (10^-12)
# we postpone the conversion because the global axis is
# always expected to be in cm-1 for relevant experiments
frequency_diff = (global_axis_value - frequencies) * 0.03 * 2 * np.pi
d = width**2
k = rates + 1j * frequency_diff
dk = k * d
sqwidth = np.sqrt(2) * width

a = np.zeros((len(model_axis), len(rates)), dtype=np.complex128)
a[np.ix_(left_shifted_axis_indices, neg_idx)] = np.exp(
(-1 * left_shifted_axis[:, None] + 0.5 * dk[:]) * k[:]
)

b = np.zeros((len(model_axis), len(rates)), dtype=np.complex128)
# For negative rates we flip the sign of the `erf` by using `-sqwidth` in lieu of `sqwidth`
b[np.ix_(left_shifted_axis_indices, neg_idx)] = 1 + erf(
(left_shifted_axis[:, None] - dk[:]) / -sqwidth
)

osc = -(a * b) * scale

return np.concatenate((osc.real, osc.imag), axis=1)
Loading

0 comments on commit 8da51b9

Please sign in to comment.