Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minor fixes to MVLogNormal discretization #1507

Merged
merged 1 commit into from
Oct 31, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 31 additions & 16 deletions HARK/distribution.py
Original file line number Diff line number Diff line change
Expand Up @@ -963,11 +963,11 @@ def _approx_equiprobable(
)

if np.array_equal(self.Sigma, np.diag(np.diag(self.Sigma))):
ind_atoms = np.empty((self.M, N))
ind_atoms = np.empty((self.M, N + 2 * tail_N))

for i in range(self.M):
if self.Sigma[i, i] == 0.0:
x_atoms = np.repeat(np.exp(self.mu[i]), N)
x_atoms = np.repeat(np.exp(self.mu[i]), N + 2 * tail_N)
ind_atoms[i] = x_atoms
else:
x_atoms = (
Expand All @@ -983,7 +983,22 @@ def _approx_equiprobable(
atoms = np.stack(
[ar.flatten() for ar in list(np.meshgrid(*atoms_list))], axis=1
).T
pmv = np.repeat(1 / (N**self.M), N**self.M)

interiors = np.empty([self.M, (N + 2 * tail_N) ** (self.M)])

inners = np.zeros(N + 2 * tail_N)

if tail_N > 0:
inners[:tail_N] = [(tail_N - i) for i in range(tail_N)]
inners[-tail_N:] = [(i + 1) for i in range(tail_N)]

for i in range(self.M):
inners_i = [inners for _ in range((N + 2 * tail_N) ** i)]

interiors[i] = np.repeat(
[*inners_i], (N + 2 * tail_N) ** (self.M - (i + 1))
)

else:
if tail_bound is not None:
if type(tail_bound) is float:
Expand Down Expand Up @@ -1024,10 +1039,10 @@ def eval(params, z):
excl = []

for j in range(len(z)):
if z[j, 0] != z[j, 1]:
inds.append(j)
else:
if z[j, 0] == z[j, 1]:
excl.append(j)
elif params[j] != 0.0:
inds.append(j)

dim = len(inds)

Expand Down Expand Up @@ -1111,21 +1126,21 @@ def eval(params, z):

atoms[i] = xi_atoms

max_locs = np.argmax(np.abs(interiors), axis=0)
max_locs = np.argmax(np.abs(interiors), axis=0)

max_inds = np.stack([max_locs, np.arange(len(max_locs))], axis=1)
max_inds = np.stack([max_locs, np.arange(len(max_locs))], axis=1)

prob_locs = interiors[max_inds[:, 0], max_inds[:, 1]]
prob_locs = interiors[max_inds[:, 0], max_inds[:, 1]]

def prob_assign(x):
if x == 0:
return 1 / (N**self.M)
else:
return 0.0
def prob_assign(x):
if x == 0:
return 1 / (N**self.M)
else:
return 0.0

prob_vec = np.vectorize(prob_assign)
prob_vec = np.vectorize(prob_assign)

pmv = prob_vec(prob_locs)
pmv = prob_vec(prob_locs)

limit = {
"dist": self,
Expand Down
Loading