Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix Jacobian Methods #1342

Merged
merged 6 commits into from
Aug 17, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
fix Jacobian code
William Du authored and William Du committed Jul 6, 2023
commit cc0b2a9ec8540cf0106ef154d975cdfc6f034bc7
106 changes: 81 additions & 25 deletions HARK/ConsumptionSaving/ConsIndShockModel.py
Original file line number Diff line number Diff line change
@@ -2927,36 +2927,92 @@ def calc_jacobian(self, shk_param, T):
########
# STEP4 # of the algorithm
########

# Function to compute jacobian matrix from fake news matrix
def J_from_F(F):
J = F.copy()
for t in range(1, F.shape[0]):
J[1:, t] += J[:-1, t-1]
return J

J_A = J_from_F(Curl_F_A)
J_C = J_from_F(Curl_F_C)

########
# Additional step due to compute Zeroth Column of the Jacobian
########

params = deepcopy(self.__dict__["parameters"])
params["T_cycle"] = 2 # Dimension of Jacobian Matrix

params["LivPrb"] = params["T_cycle"] * [self.LivPrb[0]]
params["PermGroFac"] = params["T_cycle"] * [self.PermGroFac[0]]
params["PermShkStd"] = params["T_cycle"] * [self.PermShkStd[0]]
params["TranShkStd"] = params["T_cycle"] * [self.TranShkStd[0]]
params["Rfree"] = params["T_cycle"] * [self.Rfree]
params["UnempPrb"] = params["T_cycle"] * [self.UnempPrb]
params["IncUnemp"] = params["T_cycle"] * [self.IncUnemp]
params['wage'] = params['T_cycle']*[self.wage[0]]
params['taxrate'] = params['T_cycle']*[self.taxrate[0]]
params['labor'] = params['T_cycle']*[self.labor[0]]
params['TranShkMean_Func'] = params['T_cycle']*[self.TranShkMean_Func[0]]
params['IncShkDstn'] = params['T_cycle']* [self.IncShkDstn[0]]
params['cFunc_terminal_'] = deepcopy(self.solution[0].cFunc)

# Create instance of a finite horizon agent for calculation of zeroth
ZerothColAgent = IndShockConsumerType(**params)
ZerothColAgent.cycles = 1 # required

# If parameter is in time invariant list then add it to time vary list
ZerothColAgent.del_from_time_inv(shk_param)
ZerothColAgent.add_to_time_vary(shk_param)

# Jacobian Matrices
J_A = np.zeros((T, T)) # Asset Jacobian
J_C = np.zeros((T, T)) # Consumption Jacobian
for t in range(T):
for s in range(T):
if (t == 0) or (s == 0):
J_A[t][s] = Curl_F_A[t][s]
J_C[t][s] = Curl_F_C[t][s]
else:
J_A[t][s] = J_A[t - 1][s - 1] + Curl_F_A[t][s]
J_C[t][s] = J_C[t - 1][s - 1] + Curl_F_C[t][s]

# Zeroth Column of the Jacobian
dD_0_0 = np.dot(tranmat_t[-2] - tranmat_ss, D_ss)
# Update income process if perturbed parameter enters the income shock distribution
ZerothColAgent.update_income_process()

D_curl_0_0 = dD_0_0 / dx
# Solve
ZerothColAgent.solve()

# this condition is because some attributes are specified as lists while other as floats
if type(getattr(self, shk_param)) == list:
peturbed_list = (
[getattr(self, shk_param)[0] + dx]
+ (params["T_cycle"] - 1) * [getattr(self, shk_param)[0]]
) # Sequence of interest rates the agent faces
else:
peturbed_list = (
[getattr(self, shk_param) + dx]
+ (params["T_cycle"] - 1) * [getattr(self, shk_param)]
) # Sequence of interest rates the agent

setattr(ZerothColAgent, shk_param, peturbed_list) # Set attribute to agent

c_first_col_0 = []
a_first_col_0 = []
for i in range(params["T_cycle"]):
c_first_col_0.append(np.dot(exp_vecs_c[i], D_curl_0_0))
a_first_col_0.append(np.dot(exp_vecs_a[i], D_curl_0_0))
# Use Harmenberg Neutral Measure
ZerothColAgent.neutral_measure = True
ZerothColAgent.update_income_process()

c_first_col_0 = np.array(c_first_col_0)
a_first_col_0 = np.array(a_first_col_0)
# Calculate Transition Matrices
ZerothColAgent.define_distribution_grid()
ZerothColAgent.calc_transition_matrix()

tranmat_t_zeroth_col = ZerothColAgent.tran_matrix
dstn_t_zeroth_col = self.vec_erg_dstn.T[0]

C_t_no_sim = np.zeros(T)
A_t_no_sim = np.zeros(T)

# Fill zeroth column of jacobian matrix
J_A.T[0] = a_first_col_0
J_C.T[0] = c_first_col_0
for i in range(T):
if i ==0:
dstn_t_zeroth_col = np.dot(tranmat_t_zeroth_col[i],dstn_t_zeroth_col)
else:
dstn_t_zeroth_col = np.dot(tranmat_ss,dstn_t_zeroth_col)

C_t_no_sim[i] = np.dot(self.cPol_Grid ,dstn_t_zeroth_col)
A_t_no_sim[i] = np.dot( self.aPol_Grid ,dstn_t_zeroth_col)

J_A.T[0] = (A_t_no_sim - self.A_ss)/dx
J_C.T[0] = (C_t_no_sim - self.C_ss)/dx


return J_C, J_A