forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initial NPU support for MiniCPM-V-2_6 (intel-analytics#11966)
* initial pr * update npu model * fix * fix kv cache type * fix * small fix * fix style * fix model id * change inter_pp=4 * address comment * fix * fix style * fix * rebase
- Loading branch information
1 parent
f88286c
commit e0d332a
Showing
6 changed files
with
129 additions
and
20 deletions.
There are no files selected for viewing
92 changes: 92 additions & 0 deletions
92
python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal/minicpm_v_2_6.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
|
||
import torch | ||
import os | ||
import time | ||
import argparse | ||
import requests | ||
from PIL import Image | ||
from ipex_llm.transformers.npu_model import AutoModel | ||
from transformers import AutoTokenizer | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model') | ||
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6", | ||
help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded' | ||
', or the path to the huggingface checkpoint folder') | ||
parser.add_argument('--image-url-or-path', type=str, | ||
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', | ||
help='The URL or path to the image to infer') | ||
parser.add_argument('--prompt', type=str, default="What is in this image?", | ||
help='Prompt to infer') | ||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict") | ||
parser.add_argument("--max-output-len", type=int, default=1024) | ||
parser.add_argument("--max-prompt-len", type=int, default=960) | ||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False) | ||
parser.add_argument("--intra-pp", type=int, default=2) | ||
parser.add_argument("--inter-pp", type=int, default=2) | ||
|
||
args = parser.parse_args() | ||
model_path = args.repo_id_or_model_path | ||
image_path = args.image_url_or_path | ||
|
||
model = AutoModel.from_pretrained(model_path, | ||
torch_dtype=torch.float32, | ||
trust_remote_code=True, | ||
attn_implementation="eager", | ||
load_in_low_bit="sym_int4", | ||
optimize_model=True, | ||
max_output_len=args.max_output_len, | ||
max_prompt_len=args.max_prompt_len, | ||
intra_pp=args.intra_pp, | ||
inter_pp=args.inter_pp, | ||
transpose_value_cache=not args.disable_transpose_value_cache, | ||
modules_to_not_convert=['vpm', 'resampler'] | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, | ||
trust_remote_code=True) | ||
model.eval() | ||
|
||
query = args.prompt | ||
if os.path.exists(image_path): | ||
image = Image.open(image_path).convert('RGB') | ||
else: | ||
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') | ||
|
||
# Generate predicted tokens | ||
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md | ||
msg = [{'role': 'user', 'content': args.prompt}] | ||
st = time.time() | ||
with torch.inference_mode(): | ||
res = model.chat( | ||
image=image, | ||
msgs=msg, | ||
context=None, | ||
tokenizer=tokenizer, | ||
sampling=True, | ||
) | ||
end = time.time() | ||
print(f'Inference time: {end-st} s') | ||
print('-'*20, 'Input', '-'*20) | ||
print(image_path) | ||
print('-'*20, 'Prompt', '-'*20) | ||
print(args.prompt) | ||
output_str = res | ||
print('-'*20, 'Output', '-'*20) | ||
print(output_str) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters