forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NPU] Add initial support for minicpm-llama-v2.5 (intel-analytics#11962)
* add initial support for minicpm-llama-v2.5 * update impl * add minicpm-llama3-v2.5 example
- Loading branch information
1 parent
328c767
commit f88286c
Showing
2 changed files
with
115 additions
and
4 deletions.
There are no files selected for viewing
103 changes: 103 additions & 0 deletions
103
python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal/minicpm-llama3-v2.5.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import os | ||
import torch | ||
import time | ||
import argparse | ||
|
||
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM | ||
from transformers import AutoTokenizer | ||
from transformers.utils import logging | ||
|
||
import requests | ||
from PIL import Image | ||
|
||
logger = logging.get_logger(__name__) | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser( | ||
description="Predict Tokens using `chat()` API for npu model" | ||
) | ||
parser.add_argument( | ||
"--repo-id-or-model-path", | ||
type=str, | ||
default="openbmb/MiniCPM-Llama3-V-2_5", | ||
help="The huggingface repo id for the MiniCPM-Llama3-V-2_5 model to be downloaded" | ||
", or the path to the huggingface checkpoint folder", | ||
) | ||
parser.add_argument('--image-url-or-path', type=str, | ||
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', | ||
help='The URL or path to the image to infer') | ||
parser.add_argument('--prompt', type=str, default="What is in the image?", | ||
help='Prompt to infer') | ||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict") | ||
parser.add_argument("--max-output-len", type=int, default=1024) | ||
parser.add_argument("--max-prompt-len", type=int, default=512) | ||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False) | ||
parser.add_argument("--intra-pp", type=int, default=2) | ||
parser.add_argument("--inter-pp", type=int, default=2) | ||
|
||
args = parser.parse_args() | ||
model_path = args.repo_id_or_model_path | ||
|
||
model = AutoModelForCausalLM.from_pretrained( | ||
model_path, | ||
torch_dtype=torch.float32, | ||
trust_remote_code=True, | ||
attn_implementation="eager", | ||
load_in_low_bit="sym_int4", | ||
optimize_model=True, | ||
max_output_len=args.max_output_len, | ||
max_prompt_len=args.max_prompt_len, | ||
intra_pp=args.intra_pp, | ||
inter_pp=args.inter_pp, | ||
transpose_value_cache=not args.disable_transpose_value_cache, | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | ||
|
||
print("-" * 80) | ||
print("done") | ||
|
||
msgs = [{'role': 'user', 'content': args.prompt}] | ||
image_path = args.image_url_or_path | ||
if os.path.exists(image_path): | ||
image = Image.open(image_path).convert('RGB') | ||
else: | ||
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') | ||
|
||
st = time.time() | ||
res = model.chat( | ||
image=image, | ||
msgs=msgs, | ||
tokenizer=tokenizer, | ||
sampling=True, | ||
temperature=0.7, | ||
# system_prompt='' # pass system_prompt if needed | ||
) | ||
end = time.time() | ||
|
||
print(f'Inference time: {end-st} s') | ||
print('-'*20, 'Input', '-'*20) | ||
print(image_path) | ||
print('-'*20, 'Prompt', '-'*20) | ||
print(args.prompt) | ||
output_str = res | ||
print('-'*20, 'Output', '-'*20) | ||
print(output_str) | ||
|
||
print("done") | ||
print("success shut down") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters