Skip to content

Commit

Permalink
[NPU] Add initial support for minicpm-llama-v2.5 (intel-analytics#11962)
Browse files Browse the repository at this point in the history
* add initial support for minicpm-llama-v2.5

* update impl

* add minicpm-llama3-v2.5 example
  • Loading branch information
sgwhat authored and cranechu0131 committed Sep 9, 2024
1 parent 328c767 commit f88286c
Show file tree
Hide file tree
Showing 2 changed files with 115 additions and 4 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import torch
import time
import argparse

from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers.utils import logging

import requests
from PIL import Image

logger = logging.get_logger(__name__)

if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `chat()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="openbmb/MiniCPM-Llama3-V-2_5",
help="The huggingface repo id for the MiniCPM-Llama3-V-2_5 model to be downloaded"
", or the path to the huggingface checkpoint folder",
)
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
parser.add_argument("--max-output-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--intra-pp", type=int, default=2)
parser.add_argument("--inter-pp", type=int, default=2)

args = parser.parse_args()
model_path = args.repo_id_or_model_path

model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float32,
trust_remote_code=True,
attn_implementation="eager",
load_in_low_bit="sym_int4",
optimize_model=True,
max_output_len=args.max_output_len,
max_prompt_len=args.max_prompt_len,
intra_pp=args.intra_pp,
inter_pp=args.inter_pp,
transpose_value_cache=not args.disable_transpose_value_cache,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

print("-" * 80)
print("done")

msgs = [{'role': 'user', 'content': args.prompt}]
image_path = args.image_url_or_path
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')

st = time.time()
res = model.chat(
image=image,
msgs=msgs,
tokenizer=tokenizer,
sampling=True,
temperature=0.7,
# system_prompt='' # pass system_prompt if needed
)
end = time.time()

print(f'Inference time: {end-st} s')
print('-'*20, 'Input', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
output_str = res
print('-'*20, 'Output', '-'*20)
print(output_str)

print("done")
print("success shut down")
16 changes: 12 additions & 4 deletions python/llm/src/ipex_llm/transformers/npu_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,17 +152,25 @@ def from_pretrained(cls, *args, **kwargs):
)
from ipex_llm.transformers.npu_models.convert_mp import optimize_llm, optimize_llm_pre

if model.config.model_type == "minicpmv":
llm = model.llm
if llm.config.hidden_size == 4096 and llm.config.vocab_size == 128256:
# MiniCPM-llama3-V2.5
llm.config.model_type = "llama"
else:
llm = model

with torch.no_grad():
optimize_llm_pre(model, qtype)
cls.load_convert(qtype, model, "cpu", *args, **kwargs)
create_npu_kernels(model)
optimize_llm_pre(llm, qtype)
cls.load_convert(qtype, llm, "cpu", *args, **kwargs)
create_npu_kernels(llm)
model = model.eval()
logger.info(f"Finish to convert model")
model.config.update({"bigdl_transformers_low_bit": qtype})
model.share_memory()

optimize_llm(
model,
llm,
max_output_len=max_output_len,
max_prompt_len=max_prompt_len,
inter_pp=inter_pp,
Expand Down

0 comments on commit f88286c

Please sign in to comment.