Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make charm's images configurable in track/<last-version> branch #307

Closed
3 tasks
DnPlas opened this issue Sep 25, 2023 · 0 comments
Closed
3 tasks

Make charm's images configurable in track/<last-version> branch #307

DnPlas opened this issue Sep 25, 2023 · 0 comments
Labels
enhancement New feature or request

Comments

@DnPlas
Copy link
Contributor

DnPlas commented Sep 25, 2023

Description

The goal of this task is to make all images configurable so that when this charm is deployed in an airgapped environment, all image resources are pulled from an arbitrary local container image registry (avoiding pulling images from the internet).
This serves as a tracking issue for the required changes and backports to the latest stable track/* Github branch.

TL;DR

Mark the following as done

  • Required changes (in metadata.yaml, config.yaml, src/charm.py)
  • Test on airgap environment
  • Publish to /stable

Required changes

WARNING: No breaking changes should be backported into the track/<version> branch. A breaking change can be anything that requires extra steps to refresh from the previous /stable other than just juju refresh. Please avoid at all costs these situations.

The following files have to be modified and/or verified to enable image configuration:

  • metadata.yaml - the container image(s) of the workload containers have to be specified in this file. This only applies to sidecar charms. Example:
containers:
  training-operator:
    resource: training-operator-image
resources:
  training-operator-image:
    type: oci-image
    description: OCI image for training-operator
    upstream-source: kubeflow/training-operator:v1-855e096
  • config.yaml - in case the charm deploys containers that are used by resource(s) the operator creates. Example:
apiVersion: v1
kind: ConfigMap
metadata:
  name: seldon-config
  namespace: {{ namespace }}
data:
  predictor_servers: |-
    {
        "TENSORFLOW_SERVER": {
          "protocols" : {
            "tensorflow": {
              "image": "tensorflow/serving", <--- this image should be configurable
              "defaultImageVersion": "2.1.0"
              },
            "seldon": {
              "image": "seldonio/tfserving-proxy",
              "defaultImageVersion": "1.15.0"
              }
            }
        },
...
  • tools/get-images.sh - is a bash script that returns a list of all the images that are used by this charm. In the case of a multi-charm repo, this is located at the root of the repo and gathers images from all charms in it.

  • src/charm.py - verify that nothing inside the charm code is calling a subprocess that requires internet connection.

Testing

  1. Spin up an airgap environment following Extend tests and automation scripts for airgapped installations bundle-kubeflow#682 and airgapped: unable to reach the dashboard through public-url bundle-kubeflow#703 (comment)

  2. Build the charm making sure that all the changes for airgap are in place.

  3. Deploy the charms manually and observe the charm go to active and idle.

  4. Additionally, run integration tests or simulate them. For instance, creating a workload (like a PytorchJob, a SeldonDeployment, etc.).

Publishing

After completing the changes and testing, this charm has to be published to its stable risk in Charmhub. For that you must wait for the charm to be published to /edge, which is the revision to be promoted to /stable. Use the workflow dispatch for this (Actions>Release charm to other tracks...>Run workflow).

Suggested changes/backports

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
Development

No branches or pull requests

2 participants