Skip to content

bede/hostile

Repository files navigation

DOI:10.1101/2023.07.04.547735 PyPI version Bioconda version Downloads Tests

Hostile

Hostile accurately removes host sequences from short and long read (meta)genomes, consuming single or paired FASTQ from files or stdin. Batteries are included – a human reference genome is downloaded when run for the first time. Hostile is precise by default, removing an order of magnitude fewer microbial reads than existing approaches while removing >99.5% of real human reads from 1000 Genomes Project samples. For best possible retention of microbial reads, optionally use an existing index masked against bacterial and/or viral genomes, or make your own using the built-in masking utility. Read headers can be replaced with integers (using --rename) for privacy and smaller FASTQs. Heavy lifting is done with fast existing tools operating on a stream. In benchmarks, bacterial Illumina reads were decontaminated at 32Mbp/s (210k reads/sec) and bacterial ONT reads at 22Mbp/s, using 8 alignment threads. In typical use, Hostile requires 4GB of RAM for decontaminating short reads (Bowtie2) and 13GB for long reads (Minimap2). Further information and benchmarks can be found in the paper and blog post. Please open an issue to report problems or otherwise reach out for help and advice, and please cite the paper if you use Hostile in your work.

Diagram

Indexes

The default index human-t2t-hla comprises T2T-CHM13v2.0 and IPD-IMGT/HLA v3.51, and is downloaded automatically when running Hostile unless another index is specified. Higher microbial sequence retention may be possible using masked indexes, which are very easy to use. The index human-t2t-hla-argos985 is masked against 985 reference grade bacterial genomes including common human pathogens, while human-t2t-hla.argos-bacteria-985_rs-viral-202401_ml-phage-202401 is further masked against all known virus and phage genomes. The latter should be used when retention of viral sequences is a priority. To use a standard index, simply pass its name as the value of the --index argument, which takes care of downloading and caching the relevant index. Object storage is provided by the ModMedMicro research unit at the University of Oxford. Custom indexes are also supported (see below).

Name Composition Date Masked positions
human-t2t-hla (default) T2T-CHM13v2.0 + IPD-IMGT/HLA v3.51 2023-07 0 (0%)
human-t2t-hla-argos985 human-t2t-hla masked with 150mers for 985 FDA-ARGOS bacterial genomes 2023-07 317,973 (0.010%)
human-t2t-hla.rs-viral-202401_ml-phage-202401 human-t2t-hla masked with 150mers for 18,719 RefSeq viral and 26,928 Millard Lab phage genomes 2024-01 1,172,993 (0.037%)
human-t2t-hla.argos-bacteria-985_rs-viral-202401_ml-phage-202401 human-t2t-hla masked with 150mers for 985 FDA-ARGOS bacterial, 18,719 RefSeq viral, and 26,928 Millard Lab phage genomes 2024-01 1,473,260 (0.046%)
human-t2t-hla-argos985-mycob140 human-t2t-hla masked with 150mers for 985 FDA-ARGOS bacterial & 140 mycobacterial genomes 2023-07 319,752 (0.010%)
mouse-mm39 GRCm39 (GCF_000001635.27) 2024-11 0 (0%)

Performance of human-t2t-hla and human-t2t-hla-argos985-mycob140 was evaluated in the paper

Install Install with bioconda Install with Docker

Installation with conda/mamba or Docker is recommended due to non-Python dependencies (Bowtie2, Minimap2, Samtools and Bedtools). Hostile is tested with Ubuntu Linux 22.04, MacOS 12, and under WSL for Windows.

Conda/mamba

conda create -y -n hostile -c conda-forge -c bioconda hostile
conda activate hostile

Docker

git clone https://github.com/bede/hostile.git
cd hostile
docker build . --platform linux/amd64

A Biocontainer image is also available, but beware that this often lags behind the latest released version

Getting started

# Long reads
hostile clean --fastq1 long.fastq.gz  # Creates long.clean.fastq.gz
hostile clean --fastq1 --index mouse-mm39  # Use mouse index
cat reads.fastq | hostile clean --fastq1 -  # Read from stdin
hostile clean --fastq1 long.fastq.gz -o - > long.clean.fastq  # Write to stdout
hostile clean --fastq1 long.fastq.gz --invert  # Keep only host reads

# Short reads
hostile clean --fastq1 short.r1.fq.gz --aligner bowtie2  # Single/unpaired
hostile clean --fastq1 short.r1.fq.gz --fastq2 short.r2.fq.gz  # Paired
cat interleaved.fastq | hostile clean --fastq1 - --fastq2 -  # Read from stdin
hostile clean --fastq1 short.r1.fq.gz --fastq2 short.r2.fq.gz -o - > clean.interleaved.fq  # Write fastq to stdout

Custom indexes

  • To list available standard indexes, run hostile index list.
  • To optionally download and cache the default index (human-t2t-hla) ahead of time, run hostile index fetch. Include --minimap2 or --bowtie2 to download only the respective long or short read index rather than both. To download and cache another standard index, provide its name with e.g. hostile index fetch --name human-t2t-hla-argos985 --minimap2.
  • To use a custom genome/index (made with hostile mask or otherwise), run hostile clean with --index path/to/genome.fa (for minimap2) or --index path/to/bowtie2-index-name (for Bowtie2). Note that Minimap2 mode accepts a path to a genome in fasta format or .mmi, whereas Bowtie2 mode accepts a path to a precomputed index, minus the .x.bt2 suffix. A Bowtie2 index can be built for use with Hostile using e.g. bowtie2-build genome.fa index-name.
  • To change where indexes are stored, set the environment variable HOSTILE_CACHE_DIR to a directory of your choice. Run hostile index list to verify.
  • If you wish to use your own remote repository of indexes, set the environment variable HOSTILE_REPOSITORY_URL. Hostile will then look for indexes inside {HOSTILE_REPOSITORY_URL}/manifest.json.
  • From version 2.0.0 onwards, Hostile automatically builds and reuses .mmi files to speed up long read decontamination with Minimap2. If building an MMI is interrupted, you may receive an error about index corruption. If this happens, run hostile index delete --mmi, or if using a custom index, delete the .mmi created in the same directory.

Command line usage

$ hostile clean -h
usage: hostile clean [-h] --fastq1 FASTQ1 [--fastq2 FASTQ2] [--aligner {bowtie2,minimap2,auto}] [--index INDEX] [--invert] [--rename] [--reorder] [-c] [-o OUTPUT]
                     [--aligner-args ALIGNER_ARGS] [-t THREADS] [--force] [--airplane] [-d]

Remove reads aligning to an index from fastq[.gz] input files or stdin.

options:
  -h, --help            show this help message and exit
  --fastq1 FASTQ1       path to forward fastq[.gz] file (or - for stdin)
  --fastq2 FASTQ2       optional path to reverse fastq[.gz] file (or - for stdin)
                        (default: )
  --aligner {bowtie2,minimap2,auto}
                        alignment algorithm. Defaults to minimap2 (long read) given fastq1 only or bowtie2 (short read)
                        given fastq1 and fastq2. Override with bowtie2 for single/unpaired short reads
                        (default: auto)
  --index INDEX         name of standard index or path to custom genome (Minimap2) or Bowtie2 index
                        (default: human-t2t-hla)
  --invert              keep only reads aligning to the index (and their mates if applicable)
                        (default: False)
  --rename              replace read names with incrementing integers
                        (default: False)
  --reorder             ensure deterministic output order
                        (default: False)
  -c, --casava          use Casava 1.8+ read header format
                        (default: False)
  -o, --output OUTPUT   path to output directory or - for stdout
                        (default: /Users/bede/Research/git/hostile)
  --aligner-args ALIGNER_ARGS
                        additional arguments for alignment
                        (default: )
  -t, --threads THREADS
                        number of alignment threads. A sensible default is chosen automatically
                        (default: 10)
  --force               overwrite existing output files
                        (default: False)
  --airplane            disable automatic index download (offline mode)
                        (default: False)
  -d, --debug           show debug messages
                        (default: False)

Long reads

Writes compressed fastq.gz files to working directory, sends log to stdout

$ hostile clean --fastq1 tests/data/tuberculosis_1_1.fastq.gz
INFO: Hostile v2.0.0. Mode: long read (Minimap2)
INFO: Found cached standard index human-t2t-hla (MMI available)
INFO: Cleaning…
INFO: Cleaning complete
[
    {
        "version": "2.0.0",
        "aligner": "minimap2",
        "index": "human-t2t-hla",
        "options": [],
        "fastq1_in_name": "tuberculosis_1_1.fastq.gz",
        "fastq1_in_path": "/Users/bede/Research/git/hostile/tests/data/tuberculosis_1_1.fastq.gz",
        "reads_in": 1,
        "reads_out": 1,
        "reads_removed": 0,
        "reads_removed_proportion": 0.0,
        "fastq1_out_name": "tuberculosis_1_1.clean.fastq.gz",
        "fastq1_out_path": "/Users/bede/Research/git/hostile/tuberculosis_1_1.clean.fastq.gz"
    }
]

Long reads (non-default index, save log)

$ hostile clean --fastq1 tests/data/tuberculosis_1_1.fastq.gz --index human-t2t-hla-argos985-mycob140 > log.json
INFO: Hostile v2.0.0. Mode: long read (Minimap2)
INFO: Found cached standard index human-t2t-hla (MMI available)
INFO: Cleaning…
INFO: Cleaning complete

Long reads (stdout)

Reads sent to stdout, log sent to stderr

$ hostile clean --fastq1 tests/data/tuberculosis_1_1.fastq.gz -o - > out.fastq
INFO: Hostile v2.0.0. Mode: long read (Minimap2)
INFO: Found cached standard index human-t2t-hla (MMI available)
INFO: Cleaning…
INFO: Cleaning complete
[
    {
        "version": "2.0.0",
        "aligner": "minimap2",
        "index": "human-t2t-hla",
        "options": [
            "stdout"
        ],
        "fastq1_in_name": "tuberculosis_1_1.fastq.gz",
        "fastq1_in_path": "/Users/bede/Research/git/hostile/tests/data/tuberculosis_1_1.fastq.gz",
        "reads_in": 1,
        "reads_out": 1,
        "reads_removed": 0,
        "reads_removed_proportion": 0.0
    }
]

Short paired reads

When providing both --fastq1 and --fastq2, Hostile asssumes you are providing short reads and uses Bowtie2 automatically.

$ hostile clean --fastq1 human_1_1.fastq.gz --fastq2 human_1_2.fastq.gz
INFO: Hostile v2.0.0. Mode: paired short read (Bowtie2)
INFO: Found cached standard index human-t2t-hla
INFO: Cleaning…
INFO: Cleaning complete
[
    {
        "version": "2.0.0",
        "aligner": "bowtie2",
        "index": "human-t2t-hla",
        "options": [],
        "fastq1_in_name": "human_1_1.fastq.gz",
        "fastq1_in_path": "/Users/bede/Research/git/hostile/tests/data/human_1_1.fastq.gz",
        "reads_in": 2,
        "reads_out": 0,
        "reads_removed": 2,
        "reads_removed_proportion": 1.0,
        "fastq2_in_name": "human_1_2.fastq.gz",
        "fastq2_in_path": "/Users/bede/Research/git/hostile/tests/data/human_1_2.fastq.gz",
        "fastq1_out_name": "human_1_1.clean_1.fastq.gz",
        "fastq1_out_path": "/Users/bede/Research/git/hostile/human_1_1.clean_1.fastq.gz",
        "fastq2_out_name": "human_1_2.clean_2.fastq.gz",
        "fastq2_out_path": "/Users/bede/Research/git/hostile/human_1_2.clean_2.fastq.gz"
    }
]

Short single/unpaired reads (save log)

When decontaminating single/unpaired short reads, you must specify --aligner bowtie2 to override the default long read setting for single/unpaired input. Interleaved input is not supported.

$ hostile clean --fastq1 human_1_1.fastq.gz --aligner bowtie2 > log.json
INFO: Hostile v2.0.0. Mode: paired short read (Bowtie2)
INFO: Found cached standard index human-t2t-hla-argos985
INFO: Cleaning…
INFO: Cleaning complete

Short paired reads (stdout)

When using stdout mode with paired input, Hostile sends interleaved paired reads to stdout.

$ hostile clean --fastq1 human_1_1.fastq.gz --fastq2 human_1_2.fastq.gz -o - > interleaved.fastq
INFO: Hostile v2.0.0. Mode: paired short read (Bowtie2)
INFO: Found cached standard index human-t2t-hla
INFO: Cleaning…
INFO: Cleaning complete
[
    {
        "version": "2.0.0",
        "aligner": "bowtie2",
        "index": "human-t2t-hla",
        "options": [],
        "fastq1_in_name": "human_1_1.fastq.gz",
        "fastq1_in_path": "/Users/bede/Research/git/hostile/tests/data/human_1_1.fastq.gz",
        "reads_in": 2,
        "reads_out": 0,
        "reads_removed": 2,
        "reads_removed_proportion": 1.0,
        "fastq2_in_name": "human_1_2.fastq.gz",
        "fastq2_in_path": "/Users/bede/Research/git/hostile/tests/data/human_1_2.fastq.gz",
    }
]

Python usage

from pathlib import Path
from hostile.lib import clean_fastqs, clean_paired_fastqs

# Long reads, defaults
clean_fastqs(
    fastqs=[Path("reads.fastq.gz")],
)

# Paired short reads, various options, capture log
log = clean_paired_fastqs(
    fastqs=[(Path("reads_1.fastq.gz"), Path("reads_2.fastq.gz"))],
    index="human-t2t-hla-argos985",
    out_dir=Path("decontaminated-reads"),
  	rename=True,
    force=True,
    threads=12
)

print(log)

Masking reference genomes

The mask subcommand makes it easy to create custom-masked indexes in order to achieve maximum retention of specific target organisms:

hostile mask human.fasta lots-of-bacterial-genomes.fasta --threads 8

You may wish to use one of the existing reference genomes as a starting point. Masking uses Minimap2 to align 150mers of the supplied target genomes with the reference genome, and bedtools to mask all aligned regions with N. Both a masked genome (for Minimap2) and a masked Bowtie2 index is created.

Limitations

  • Hostile prioritises retaining microbial sequences above discarding host sequences. If you strive to remove every last human sequence, other approaches may serve you better (blog post).
  • Performance is not always improved by using all available CPU cores. A sensible default is therefore chosen automatically at runtime based on the number of available CPU cores. For maximum performance you may wish to use --stdout mode and compress the fastq stream with zstandard, a faster gzip alternative.

Citation

Please cite Hostile if you find it useful.

Bede Constantinides, Martin Hunt, Derrick W Crook, Hostile: accurate decontamination of microbial host sequences, Bioinformatics, 2023; btad728, https://doi.org/10.1093/bioinformatics/btad728

@article{10.1093/bioinformatics/btad728,
    author = {Constantinides, Bede and Hunt, Martin and Crook, Derrick W},
    title = {Hostile: accurate decontamination of microbial host sequences},
    journal = {Bioinformatics},
    volume = {39},
    number = {12},
    pages = {btad728},
    year = {2023},
    month = {12},
    issn = {1367-4811},
    doi = {10.1093/bioinformatics/btad728},
    url = {https://doi.org/10.1093/bioinformatics/btad728},
    eprint = {https://academic.oup.com/bioinformatics/article-pdf/39/12/btad728/54850422/btad728.pdf},
}

Development install

git clone https://github.com/bede/hostile.git
cd hostile
conda env create -y -f environment.yml
conda activate hostile
pip install --editable '.[dev]'
pytest
pre-commit install