Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CONTRIB] TFLite Runtime #4439

Merged
merged 21 commits into from
Dec 4, 2019
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ tvm_option(USE_NNPACK "Build with nnpack support" OFF)
tvm_option(USE_RANDOM "Build with random support" OFF)
tvm_option(USE_MICRO_STANDALONE_RUNTIME "Build with micro.standalone_runtime support" OFF)
tvm_option(USE_ANTLR "Build with ANTLR for Relay parsing" OFF)
tvm_option(USE_TFLITE "Build with tflite support" OFF)

# include directories
include_directories(${CMAKE_INCLUDE_PATH})
Expand Down Expand Up @@ -257,6 +258,7 @@ include(cmake/modules/contrib/MicroStandaloneRuntime.cmake)
include(cmake/modules/contrib/Sort.cmake)
include(cmake/modules/contrib/NNPack.cmake)
include(cmake/modules/contrib/HybridDump.cmake)
include(cmake/modules/contrib/TfLite.cmake)

if(NOT MSVC)
include(CheckCXXCompilerFlag)
Expand Down
2 changes: 2 additions & 0 deletions cmake/config.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,8 @@ set(USE_RANDOM OFF)
# Whether use NNPack
set(USE_NNPACK OFF)

set(USE_TFLITE ON)
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved

# Whether use CuDNN
set(USE_CUDNN OFF)

Expand Down
30 changes: 30 additions & 0 deletions cmake/modules/contrib/TfLite.cmake
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

if(USE_TFLITE)
message(STATUS "Build with contrib.tflite")
if (NOT DEFINED TENSORFLOW_PATH)
set(TENSORFLOW_PATH ${CMAKE_CURRENT_SOURCE_DIR}/tensorflow)
endif()
file(GLOB TFLITE_CONTRIB_SRC src/runtime/contrib/tflite/*.cc)
list(APPEND RUNTIME_SRCS ${TFLITE_CONTRIB_SRC})
include_directories(${TENSORFLOW_PATH})
find_library(TFLITE_CONTRIB_LIB libtensorflow-lite.a ${TENSORFLOW_PATH}/tensorflow/lite/tools/make/gen/linux_x86_64/lib)
tmoreau89 marked this conversation as resolved.
Show resolved Hide resolved

list(APPEND TVM_LINKER_LIBS ${TFLITE_CONTRIB_LIB})
list(APPEND TVM_LINKER_LIBS rt dl flatbuffers)
endif(USE_TFLITE)
128 changes: 128 additions & 0 deletions python/tvm/contrib/tflite_runtime.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Minimum graph runtime that executes graph containing TVM PackedFunc."""
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved
import numpy as np

from .._ffi.base import string_types
from .._ffi.ndarray import context
from .._ffi.function import get_global_func
from .._ffi.runtime_ctypes import TVMContext
from ..rpc import base as rpc_base

def create(tflite_fname, ctx):
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved
"""Create a runtime executor module given a graph and module.
Parameters
----------
tflite_fname : str
The graph to be deployed in json format output by nnvm graph.
The graph can only contain one operator(tvm_op) that
points to the name of PackedFunc in the libmod.
ctx : TVMContext or list of TVMContext
The context to deploy the module. It can be local or remote when there
is only one TVMContext. Otherwise, the first context in the list will
be used as this purpose. All context should be given for heterogeneous
execution.
Returns
-------
graph_module : GraphModule
Runtime graph module that can be used to execute the graph.
"""
if not isinstance(tflite_fname, string_types):
raise ValueError("Type %s is not supported" % type(tflite_fname))

device_type = ctx.device_type
if device_type >= rpc_base.RPC_SESS_MASK:
device_type = ctx.device_type % rpc_base.RPC_SESS_MASK
device_id = ctx.device_id
remote_ctx = context(device_type, device_id)
fcreate = ctx._rpc_sess.get_function("tvm.tflite_runtime.create")
return TfliteModule(fcreate(tflite_fname, ctx))
fcreate = get_global_func("tvm.tflite_runtime.create")
return TfliteModule(fcreate(tflite_fname, ctx))


class TfliteModule(object):
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved
"""Wrapper runtime module.

This is a thin wrapper of the underlying TVM module.
you can also directly call set_input, run, and get_output
of underlying module functions

Parameters
----------
module : Module
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved
The interal tvm module that holds the actual graph functions.

Attributes
----------
module : Module
The interal tvm module that holds the actual graph functions.
"""

def __init__(self, module):
self.module = module
self._set_input = module["set_input"]
self._invoke = module["invoke"]
self._get_output = module["get_output"]
self._allocate_tensors = module["allocate_tensors"]

def set_input(self, index, value):
"""Set inputs to the module via kwargs

Parameters
----------
key : int or str
The input key

value : the input value.
The input key

params : dict of str to NDArray
Additonal arguments
"""
self._set_input(index, value)

def invoke(self):
"""Run forward execution of the graph

Parameters
----------
input_dict: dict of str to NDArray
List of input values to be feed to
"""
self._invoke()

def allocate_tensors(self):
self._allocate_tensors()


def get_output(self, index, out=None):
"""Get index-th output to out

Parameters
----------
index : int
The output index

out : NDArray
The output array container
"""
if out:
self._get_output(index, out)
return out

return self._get_output(index)
189 changes: 189 additions & 0 deletions src/runtime/contrib/tflite/tflite_runtime.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file tflite_runtime.cc
*/
#include <tvm/runtime/registry.h>
#include <tvm/dtype.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>


#include "tflite_runtime.h"

namespace tvm {
namespace runtime {

#define TVM_DTYPE_DISPATCH(type, DType, ...) \
if (type == Float(64)) { \
typedef double DType; \
{__VA_ARGS__} \
} else if (type == Float(32)) { \
typedef float DType; \
{__VA_ARGS__} \
} else if (type == Float(16)) { \
typedef uint16_t DType; \
{__VA_ARGS__} \
} else if (type == Int(64)) { \
typedef int64_t DType; \
{__VA_ARGS__} \
} else if (type == Int(32)) { \
typedef int32_t DType; \
{__VA_ARGS__} \
} else if (type == Int(16)) { \
typedef int16_t DType; \
{__VA_ARGS__} \
} else if (type == Int(8)) { \
typedef int8_t DType; \
{__VA_ARGS__} \
} else if (type == UInt(64)) { \
typedef uint64_t DType; \
{__VA_ARGS__} \
} else if (type == UInt(32)) { \
typedef uint32_t DType; \
{__VA_ARGS__} \
} else if (type == UInt(16)) { \
typedef uint16_t DType; \
{__VA_ARGS__} \
} else if (type == UInt(8)) { \
typedef uint8_t DType; \
{__VA_ARGS__} \
} else { \
LOG(FATAL) << "unknown data type " << type; \
}

DataType TfLiteDType2TVMDType(TfLiteType dtype) {
switch (dtype) {
case kTfLiteFloat32:
return Float(32);
case kTfLiteInt32:
return Int(32);
case kTfLiteInt64:
return Int(64);
case kTfLiteInt16:
return Int(16);
case kTfLiteInt8:
return Int(8);
case kTfLiteUInt8:
return UInt(8);
case kTfLiteFloat16:
return Float(16);
default:
LOG(FATAL) << "tflite data type not support yet: " << dtype;
return Float(32);
}
}


void TfliteRuntime::Init(const std::string& tflite_fname,
TVMContext ctx) {
std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(tflite_fname.c_str());
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model, resolver)(&interpreter_);
ctx_ = ctx;
}

void TfliteRuntime::AllocateTensors() {
interpreter_->AllocateTensors();
}

void TfliteRuntime::Invoke() {
interpreter_->Invoke();
}

void TfliteRuntime::SetInput(int index, DLTensor* data_in) {
DataType dtype(data_in->dtype);
TVM_DTYPE_DISPATCH(dtype, DType, {
DType* dest = interpreter_->typed_input_tensor<DType>(index);
DType* src = static_cast<DType*>(data_in->data);
CHECK(data_in->strides == NULL);
int64_t size = 1;
for (int64_t i = 0; i < data_in->ndim; ++i) {
size *= data_in->shape[i];
}
for (int64_t i = 0; i < size; ++i) {
dest[i] = src[i];
}
});
}

NDArray TfliteRuntime::GetOutput(int index) const {
TfLiteTensor* output = interpreter_->output_tensor(index);
DataType dtype = TfLiteDType2TVMDType(output->type);
TfLiteIntArray* dims = output->dims;
int64_t size = 1;
std::vector<int64_t> shape;
for (int i = 0; i < dims->size; ++i) {
shape.push_back(dims->data[i]);
size *= dims->data[i];
}

NDArray ret = NDArray::Empty(shape, dtype, ctx_);
TVM_DTYPE_DISPATCH(dtype, DType, {
DType* dest = static_cast<DType*>(ret->data);
DType* src = interpreter_->typed_output_tensor<DType>(index);
for (int64_t i = 0; i < size; ++i) {
dest[i] = src[i];
}
});
return ret;
}

PackedFunc TfliteRuntime::GetFunction(
const std::string& name,
const ObjectPtr<Object>& sptr_to_self) {
// Return member functions during query.
if (name == "set_input") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
int in_idx = args[0];
CHECK_GE(in_idx, 0);
this->SetInput(in_idx, args[1]);
});
} else if (name == "get_output") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
*rv = this->GetOutput(args[0]);
});
} else if (name == "invoke") {
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
this->Invoke();
});
} else if (name == "allocate_tensors") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
this->AllocateTensors();
});
} else {
return PackedFunc();
}
}

Module TfliteRuntimeCreate(const std::string& tflite_fname,
TVMContext ctx) {
auto exec = make_object<TfliteRuntime>();
exec->Init(tflite_fname, ctx);
return Module(exec);
}

TVM_REGISTER_GLOBAL("tvm.tflite_runtime.create")
.set_body([](TVMArgs args, TVMRetValue* rv) {
*rv = TfliteRuntimeCreate(args[0], args[1]);
});
} // namespace runtime
} // namespace tvm
Loading