Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CONTRIB] TFLite Runtime #4439

Merged
merged 21 commits into from
Dec 4, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,8 @@ tvm_option(USE_NNPACK "Build with nnpack support" OFF)
tvm_option(USE_RANDOM "Build with random support" OFF)
tvm_option(USE_MICRO_STANDALONE_RUNTIME "Build with micro.standalone_runtime support" OFF)
tvm_option(USE_ANTLR "Build with ANTLR for Relay parsing" OFF)
tvm_option(USE_TFLITE "Build with tflite support" OFF)
tvm_option(USE_TENSORFLOW_PATH "TensorFlow root path when use TFLite" none)

# include directories
include_directories(${CMAKE_INCLUDE_PATH})
Expand Down Expand Up @@ -257,6 +259,7 @@ include(cmake/modules/contrib/MicroStandaloneRuntime.cmake)
include(cmake/modules/contrib/Sort.cmake)
include(cmake/modules/contrib/NNPack.cmake)
include(cmake/modules/contrib/HybridDump.cmake)
include(cmake/modules/contrib/TFLite.cmake)

if(NOT MSVC)
include(CheckCXXCompilerFlag)
Expand Down
9 changes: 9 additions & 0 deletions cmake/config.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,15 @@ set(USE_RANDOM OFF)
# Whether use NNPack
set(USE_NNPACK OFF)

# Possible values:
# - ON: enable tflite with cmake's find search
# - OFF: disable tflite
# - /path/to/libtensorflow-lite.a: use specific path to tensorflow lite library
set(USE_TFLITE OFF)

# /path/to/tensorflow: tensorflow root path when use tflite library
set(USE_TENSORFLOW_PATH none)

# Whether use CuDNN
set(USE_CUDNN OFF)

Expand Down
35 changes: 35 additions & 0 deletions cmake/modules/contrib/TFLite.cmake
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

if(NOT USE_TFLITE STREQUAL "OFF")
message(STATUS "Build with contrib.tflite")
if (USE_TENSORFLOW_PATH STREQUAL "none")
set(USE_TENSORFLOW_PATH ${CMAKE_CURRENT_SOURCE_DIR}/tensorflow)
endif()

file(GLOB TFLITE_CONTRIB_SRC src/runtime/contrib/tflite/*.cc)
list(APPEND RUNTIME_SRCS ${TFLITE_CONTRIB_SRC})
include_directories(${USE_TENSORFLOW_PATH})

if (USE_TFLITE STREQUAL "ON")
set(USE_TFLITE ${USE_TENSORFLOW_PATH}/tensorflow/lite/tools/make/gen/*/lib)
endif()
find_library(TFLITE_CONTRIB_LIB libtensorflow-lite.a ${USE_TFLITE})

list(APPEND TVM_RUNTIME_LINKER_LIBS ${TFLITE_CONTRIB_LIB})
list(APPEND TVM_RUNTIME_LINKER_LIBS rt dl flatbuffers)
endif()
108 changes: 108 additions & 0 deletions python/tvm/contrib/tflite_runtime.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TFLite runtime that load and run tflite models."""
from .._ffi.function import get_global_func
from ..rpc import base as rpc_base

def create(tflite_model_bytes, ctx):
"""Create a runtime executor module given a tflite model and context.
Parameters
----------
tflite_model_byte : bytes
The tflite model to be deployed in bytes string format.
ctx : TVMContext
The context to deploy the module. It can be local or remote when there
is only one TVMContext.
Returns
-------
tflite_runtime : TFLiteModule
Runtime tflite module that can be used to execute the tflite model.
"""
device_type = ctx.device_type
if device_type >= rpc_base.RPC_SESS_MASK:
fcreate = ctx._rpc_sess.get_function("tvm.tflite_runtime.create")
return TFLiteModule(fcreate(bytearray(tflite_model_bytes), ctx))
fcreate = get_global_func("tvm.tflite_runtime.create")
return TFLiteModule(fcreate(bytearray(tflite_model_bytes), ctx))


class TFLiteModule(object):
"""Wrapper runtime module.

This is a thin wrapper of the underlying TVM module.
you can also directly call set_input, run, and get_output
of underlying module functions

Parameters
----------
module : Module
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved
The interal tvm module that holds the actual tflite functions.

Attributes
----------
module : Module
The interal tvm module that holds the actual tflite functions.
"""

def __init__(self, module):
self.module = module
self._set_input = module["set_input"]
self._invoke = module["invoke"]
self._get_output = module["get_output"]
self._allocate_tensors = module["allocate_tensors"]

def set_input(self, index, value):
"""Set inputs to the module via kwargs

Parameters
----------
key : int or str
The input key

value : the input value.
The input key

params : dict of str to NDArray
Additonal arguments
"""
self._set_input(index, value)

def invoke(self):
"""Invoke forward execution of the model

Parameters
----------
input_dict: dict of str to NDArray
List of input values to be feed to
"""
self._invoke()

def allocate_tensors(self):
"""Allocate space for all tensors.
"""
self._allocate_tensors()


def get_output(self, index):
"""Get index-th output to out

Parameters
----------
index : int
The output index
"""
return self._get_output(index)
191 changes: 191 additions & 0 deletions src/runtime/contrib/tflite/tflite_runtime.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file tflite_runtime.cc
*/
#include <tvm/runtime/registry.h>
#include <tvm/dtype.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>


#include "tflite_runtime.h"

namespace tvm {
namespace runtime {

#define TVM_DTYPE_DISPATCH(type, DType, ...) \
if (type == Float(64)) { \
typedef double DType; \
{__VA_ARGS__} \
} else if (type == Float(32)) { \
typedef float DType; \
{__VA_ARGS__} \
} else if (type == Float(16)) { \
typedef uint16_t DType; \
{__VA_ARGS__} \
} else if (type == Int(64)) { \
typedef int64_t DType; \
{__VA_ARGS__} \
} else if (type == Int(32)) { \
typedef int32_t DType; \
{__VA_ARGS__} \
} else if (type == Int(16)) { \
typedef int16_t DType; \
{__VA_ARGS__} \
} else if (type == Int(8)) { \
typedef int8_t DType; \
{__VA_ARGS__} \
} else if (type == UInt(64)) { \
typedef uint64_t DType; \
{__VA_ARGS__} \
} else if (type == UInt(32)) { \
typedef uint32_t DType; \
{__VA_ARGS__} \
} else if (type == UInt(16)) { \
typedef uint16_t DType; \
{__VA_ARGS__} \
} else if (type == UInt(8)) { \
typedef uint8_t DType; \
{__VA_ARGS__} \
} else { \
LOG(FATAL) << "unknown data type " << type; \
}

DataType TfLiteDType2TVMDType(TfLiteType dtype) {
switch (dtype) {
case kTfLiteFloat32:
return Float(32);
case kTfLiteInt32:
return Int(32);
case kTfLiteInt64:
return Int(64);
case kTfLiteInt16:
return Int(16);
case kTfLiteInt8:
return Int(8);
case kTfLiteUInt8:
return UInt(8);
case kTfLiteFloat16:
return Float(16);
default:
LOG(FATAL) << "tflite data type not support yet: " << dtype;
return Float(32);
}
}


void TFLiteRuntime::Init(const std::string& tflite_model_bytes,
TVMContext ctx) {
const char* buffer = tflite_model_bytes.c_str();
size_t buffer_size = tflite_model_bytes.size();
std::unique_ptr<tflite::FlatBufferModel> model =
tflite::FlatBufferModel::BuildFromBuffer(buffer, buffer_size);
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model, resolver)(&interpreter_);
ctx_ = ctx;
}

void TFLiteRuntime::AllocateTensors() {
interpreter_->AllocateTensors();
}

void TFLiteRuntime::Invoke() {
interpreter_->Invoke();
}

void TFLiteRuntime::SetInput(int index, DLTensor* data_in) {
DataType dtype(data_in->dtype);
TVM_DTYPE_DISPATCH(dtype, DType, {
DType* dest = interpreter_->typed_input_tensor<DType>(index);
DType* src = static_cast<DType*>(data_in->data);
CHECK(data_in->strides == NULL);
int64_t size = 1;
for (int64_t i = 0; i < data_in->ndim; ++i) {
size *= data_in->shape[i];
}
for (int64_t i = 0; i < size; ++i) {
dest[i] = src[i];
}
});
}

NDArray TFLiteRuntime::GetOutput(int index) const {
TfLiteTensor* output = interpreter_->output_tensor(index);
DataType dtype = TfLiteDType2TVMDType(output->type);
TfLiteIntArray* dims = output->dims;
int64_t size = 1;
std::vector<int64_t> shape;
for (int i = 0; i < dims->size; ++i) {
shape.push_back(dims->data[i]);
size *= dims->data[i];
}
NDArray ret = NDArray::Empty(shape, dtype, ctx_);
TVM_DTYPE_DISPATCH(dtype, DType, {
DType* dest = static_cast<DType*>(ret->data);
DType* src = interpreter_->typed_output_tensor<DType>(index);
for (int64_t i = 0; i < size; ++i) {
dest[i] = src[i];
}
});
return ret;
}

PackedFunc TFLiteRuntime::GetFunction(
const std::string& name,
const ObjectPtr<Object>& sptr_to_self) {
// Return member functions during query.
if (name == "set_input") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
int in_idx = args[0];
CHECK_GE(in_idx, 0);
this->SetInput(in_idx, args[1]);
});
} else if (name == "get_output") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
*rv = this->GetOutput(args[0]);
});
} else if (name == "invoke") {
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
this->Invoke();
});
} else if (name == "allocate_tensors") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
this->AllocateTensors();
});
} else {
return PackedFunc();
}
}

Module TFLiteRuntimeCreate(const std::string& tflite_model_bytes,
TVMContext ctx) {
auto exec = make_object<TFLiteRuntime>();
exec->Init(tflite_model_bytes, ctx);
return Module(exec);
}

TVM_REGISTER_GLOBAL("tvm.tflite_runtime.create")
.set_body([](TVMArgs args, TVMRetValue* rv) {
*rv = TFLiteRuntimeCreate(args[0], args[1]);
});
} // namespace runtime
} // namespace tvm
Loading