Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Frontend] TF Tile Round Sign Pow Exp Reverse #2960

Merged
merged 3 commits into from
Apr 19, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 64 additions & 37 deletions python/tvm/relay/frontend/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -516,6 +516,18 @@ def _impl(inputs, attr, params):
return _op.concatenate(inputs_reshaped, axis)
return _impl

def _tile():
def _impl(inputs, attr, params):
reps = params[inputs.pop().name_hint].asnumpy()
new_input = []
new_input.append(inputs.pop(0))

return AttrCvt(
op_name='tile',
extras={'reps': tuple(reps)},
ignores=['Tmultiples'])(new_input, attr)
return _impl

def _slice():
def _impl(inputs, attr, params):
begin = params.pop(_get_name_hint(inputs[1])).asnumpy().tolist()
Expand Down Expand Up @@ -835,6 +847,15 @@ def _impl(inputs, attr, params):
return AttrCvt(op_name="where")(inputs, attr)
return _impl

def _reverse_v2():
def _impl(inputs, attr, params):
axis = params.pop(inputs[1].name_hint).asnumpy()[0]
return AttrCvt(
op_name="reverse",
ignores=['Tidx'],
extras={'axis': int(axis)})([inputs[0]], attr)
return _impl

def _rank():
def _impl(inputs, attr, params):
input_shape = attr['_input_shapes'][inputs[0]]
Expand Down Expand Up @@ -977,6 +998,7 @@ def _impl(inputs, attr, params):
# for 1 to N mapping(composed), use custom callable functions
# for N to 1 mapping, currently not supported(?)
_convert_map = {
'Add' : _elemwise('add'),
'ArgMax' : _argx(_op.argmax, 'argmax'),
'ArgMin' : _argx(_op.argmin, 'argmin'),
'AvgPool' : _pooling('avg_pool'),
Expand All @@ -989,60 +1011,65 @@ def _impl(inputs, attr, params):
'ConcatV2' : _concatV2(),
'Conv2D' : _conv('conv'),
'DecodeJpeg' : _decode_image(),
'DepthwiseConv2dNative' : _conv('depthwise'),
srkreddy1238 marked this conversation as resolved.
Show resolved Hide resolved
'Equal' : _broadcast('equal'),
'Elu' : _elu(),
'Exp' : AttrCvt('exp'),
'ExpandDims' : _expand_dims(),
'Fill' : _fill(),
'Floor' : AttrCvt('floor'),
'FusedBatchNorm' : _fused_batch_norm(),
'FusedBatchNormV2' : _fused_batch_norm(),
'Gather' : _gather(),
'GatherV2' : _gather(),
'Greater' : _broadcast('greater'),
'GreaterEqual' : _broadcast('greater_equal'),
'Identity' : _identity(),
'LeakyRelu' : AttrCvt('leaky_relu'),
'Less' : _broadcast('less'),
'LessEqual' : _broadcast('less_equal'),
'LogicalAnd' : _logical('logical_and'),
'LogicalOr' : _logical('logical_or'),
'LogicalNot' : _logical('logical_not'),
'LRN' : _lrn(),
'MatMul' : _matmul(),
'MaxPool' : _pooling('max_pool'),
'Add' : _elemwise('add'),
'Sub' : _elemwise('subtract'),
'Mul' : _elemwise('multiply'),
'RealDiv' : _elemwise('div'),
'Maximum' : _elemwise('maximum'),
'Mean' : _mean(),
'Minimum' : _elemwise('minimum'),
'Sum' : _sum(),
'Square' : _square(),
'Mul' : _elemwise('multiply'),
'NotEqual' : _broadcast('not_equal'),
'Pack' : _pack(),
'Slice' : _slice(),
'LeakyRelu' : AttrCvt('leaky_relu'),
'Pad' : _pad('Pad'),
'PadV2' : _pad('PadV2'),
'Pow' : _elemwise('power'),
'Range' : _range(),
'Rank' : _rank(),
'RealDiv' : _elemwise('div'),
'Relu' : AttrCvt('relu'),
'Relu6' : _relu6(),
'Reshape' : _reshape(),
'ResizeBilinear' : _resize_bilinear(),
'Selu' : _selu(),
'Softmax' : _softmax(),
'ReverseV2' : _reverse_v2(),
'Round' : AttrCvt('round'),
'Rsqrt' : _rsqrt(),
'Squeeze' : _squeeze(),
'FusedBatchNorm' : _fused_batch_norm(),
'FusedBatchNormV2' : _fused_batch_norm(),
'Relu6' : _relu6(),
'DepthwiseConv2dNative' : _conv('depthwise'),
'Select' : _where(),
'Selu' : _selu(),
'Shape' : _shape(),
'Sigmoid' : AttrCvt('sigmoid'),
'Select' : _where(),
'Fill' : _fill(),
'GatherV2' : _gather(),
'Gather' : _gather(),
'StridedSlice' : _stridedSlice(),
'LRN' : _lrn(),
'Pad' : _pad('Pad'),
'PadV2' : _pad('PadV2'),
'Range' : _range(),
'Rank' : _rank(),
'Transpose' : _transpose(),
'Tanh' : AttrCvt('tanh'),
'Mean' : _mean(),
'LogicalAnd' : _logical('logical_and'),
'LogicalOr' : _logical('logical_or'),
'LogicalNot' : _logical('logical_not'),
'Less' : _broadcast('less'),
'Greater' : _broadcast('greater'),
'LessEqual' : _broadcast('less_equal'),
'GreaterEqual' : _broadcast('greater_equal'),
'Equal' : _broadcast('equal'),
'NotEqual' : _broadcast('not_equal'),
'Sign' : AttrCvt('sign'),
'Slice' : _slice(),
'Softmax' : _softmax(),
'Split' : _split(False),
'SplitV' : _split(True),
'Square' : _square(),
'Squeeze' : _squeeze(),
'StridedSlice' : _stridedSlice(),
'Sub' : _elemwise('subtract'),
'Sum' : _sum(),
'Tanh' : AttrCvt('tanh'),
'Tile' : _tile(),
'Transpose' : _transpose(),
'Unpack' : _unpack(),
}

Expand Down
73 changes: 73 additions & 0 deletions tests/python/frontend/tensorflow/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -625,6 +625,24 @@ def test_forward_unstack():
_test_unstack((3, 6, 4), -2, 'float32')


#######################################################################
# Tile
# ----

def _test_tile(in_shape, multiples, dtype):
np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype)
tf.reset_default_graph()
in_data = tf.placeholder(dtype, in_shape, name="in_data")
tf.tile(in_data, multiples=multiples, name="tile")
compare_tf_with_tvm([np_data], ['in_data:0'], 'tile:0')

def test_forward_tile():
'''test Tile'''
_test_tile((2, ), (3, ), "int32")
_test_tile((2, 2), (2, 3), "float32")
_test_tile((2, 4, 6), (6, 7, 8), "float64")


#######################################################################
# Multi Input to graph
# --------------------
Expand Down Expand Up @@ -1216,6 +1234,53 @@ def test_forward_tanh():
tf.nn.tanh(in1)
compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Tanh:0')

#######################################################################
# Tensor
# ------

def test_forward_round():
"""test Round"""
np_data = np.random.uniform(-10, 10, size=(5, 7)).astype(np.float32)
tf.reset_default_graph()
in_data = tf.placeholder(tf.float32, (5, 7), name="in_data")
tf.round(in_data, name="round")
compare_tf_with_tvm([np_data], ['in_data:0'], 'round:0')

def _test_forward_reverse_v2(in_shape, axis, dtype):
np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype)
tf.reset_default_graph()
in_data = tf.placeholder(dtype, in_shape, name="in_data")
tf.reverse(in_data, axis=[axis], name="reverse")
compare_tf_with_tvm([np_data], ['in_data:0'], 'reverse:0')

def test_forward_reverse_v2():
"""test ReverseV2"""
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add a negative axis if supported by TVM.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Added, yeah tvm supports this case.

_test_forward_reverse_v2((2, 3), 0, "int32")
_test_forward_reverse_v2((2, 3, 5), 2, "float32")
_test_forward_reverse_v2((2, 3, 5, 7), 1, "float32")
_test_forward_reverse_v2((2, 3, 5), -1, "float64")
_test_forward_reverse_v2((2, 3, 5), -3, "float64")

def test_forward_sign():
"""test Sign"""
np_data = np.random.uniform(-10, 10, size=(5, 7, 11)).astype(np.float32)
tf.reset_default_graph()
in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data")
tf.sign(in_data, name="sign")
compare_tf_with_tvm([np_data], ['in_data:0'], 'sign:0')

def test_forward_pow_exp():
"""test Pow"""
np_in1 = np.random.uniform(-10, 10, size=(5, 7, 11)).astype(np.float32)
np_in2 = np.random.uniform(-10, 10, size=(5, 7, 11)).astype(np.float32)
tf.reset_default_graph()
in1 = tf.placeholder(tf.float32, (5, 7, 11), name="in1")
in2 = tf.placeholder(tf.float32, (5, 7, 11), name="in2")
out1 = tf.pow(in1, in2, name="pow")
out = tf.exp(out1, name='exp')
compare_tf_with_tvm([np_in1, np_in2], ['in1:0', 'in2:0'], 'pow:0')
compare_tf_with_tvm([np_in1, np_in2], ['in1:0', 'in2:0'], 'exp:0')

#######################################################################
# Mean
# ----
Expand Down Expand Up @@ -1257,6 +1322,7 @@ def test_forward_rel_ops():
# Main
# ----
if __name__ == '__main__':

# Transforms
test_forward_transpose()
test_forward_reshape()
Expand All @@ -1270,6 +1336,7 @@ def test_forward_rel_ops():
test_forward_stridedslice()
test_forward_split()
test_forward_unstack()
test_forward_tile()

# Activations
test_forward_sigmoid()
Expand All @@ -1279,6 +1346,12 @@ def test_forward_rel_ops():
test_forward_selu()
test_forward_tanh()

# Tensor
test_forward_round()
test_forward_reverse_v2()
test_forward_pow_exp()
test_forward_sign()

# Reductions
test_forward_argminmax()
test_forward_reduce()
Expand Down