Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hexagon] Add schedule and test for conv2d_transpose_nchw #11175

Merged
merged 8 commits into from
May 3, 2022
Merged
26 changes: 26 additions & 0 deletions python/tvm/topi/hexagon/conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
"""Schedule for conv2d"""

import tvm
from ..utils import traverse_inline


def schedule_conv2d_nhwc(outs):
Expand Down Expand Up @@ -60,3 +61,28 @@ def schedule_depthwise_conv2d_nchw(outs):

def schedule_depthwise_conv2d_nhwc(out):
return schedule_conv2d_nhwc(out)


def schedule_conv2d_transpose_nchw(outs):
"""Create schedule for tensors"""
outs = [outs] if isinstance(outs, tvm.te.tensor.Tensor) else outs
s = schedule_conv2d_nchw(outs)

def _callback(op):
if "unpack_nchwc" in op.tag:
conv_out = op.input_tensors[0]
# retrieve data
data_vec = conv_out.op.input_tensors[0]
if isinstance(data_vec, tvm.te.ComputeOp):
data_pad = data_vec.op.input_tensors[0]
data_dilate = data_pad.op.input_tensors[0]
s[data_dilate].compute_inline()
s[data_pad].compute_inline()
# retrieve kernel
kernel_vec = conv_out.op.input_tensors[1]
if isinstance(kernel_vec, tvm.te.ComputeOp):
kernel_transform = kernel_vec.op.input_tensors[0]
s[kernel_transform].compute_inline()

traverse_inline(s, outs[0].op, _callback)
return s
177 changes: 177 additions & 0 deletions tests/python/contrib/test_hexagon/topi/test_conv2d_transpose.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test code for transposed convolution."""
import numpy as np
import tvm
import tvm.testing
from tvm import te
from tvm import topi
import tvm.topi.testing
from tvm.contrib.pickle_memoize import memoize
from tvm.topi.utils import get_const_tuple
from ..conftest import requires_hexagon_toolchain


# TODO Should add kernal to tvm.testing.fixture

random_seed = tvm.testing.parameter(0)


@tvm.testing.fixture
def shift_shape(batch):
return batch


@tvm.testing.fixture
def shift_shape(in_channel):
return in_channel


@tvm.testing.fixture
def shift_shape(in_size):
return in_size


@tvm.testing.fixture
def shift_shape(num_filter):
return num_filter


@tvm.testing.fixture
def shift_shape(stride):
return stride


@tvm.testing.fixture
def shift_shape(padding):
return padding


@tvm.testing.fixture
def shift_shape(output_padding):
return output_padding


class BaseConv2DTransposeTests:
@requires_hexagon_toolchain
def test_conv2d(
self,
hexagon_session,
batch,
in_channel,
in_size,
num_filter,
stride,
padding,
output_padding,
random_seed,
):

target_hexagon = tvm.target.hexagon("v68")

in_height, in_width = in_size
kernel_height, kernel_width = (1, 1)
stride_height, stride_width = stride
pad_top, pad_left, pad_bottom, pad_right = padding

A = te.placeholder((batch, in_channel, in_height, in_width), name="A")
W = te.placeholder((in_channel, num_filter, kernel_height, kernel_width), name="W")

a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
dtype = A.dtype

def get_ref_data():

np.random.seed(random_seed)
a_np = np.random.uniform(size=a_shape).astype(dtype)
w_np = np.random.uniform(size=w_shape).astype(dtype)
b_np = tvm.topi.testing.conv2d_transpose_nchw_python(
a_np, w_np, stride, padding, output_padding
)
c_np = np.maximum(b_np, 0)
return a_np, w_np, b_np, c_np

a_np, w_np, b_np, c_np = get_ref_data()

fcompute_args = (
A,
W,
[stride_height, stride_width],
[pad_top, pad_left, pad_bottom, pad_right],
A.dtype,
output_padding,
)

with tvm.target.Target(target_hexagon):
fcompute = topi.nn.conv2d_transpose_nchw
fschedule = topi.hexagon.schedule_conv2d_transpose_nchw
B = fcompute(*fcompute_args)
C = topi.nn.relu(B)
s1 = fschedule([B])
s2 = fschedule([C])

dev = hexagon_session.device

a = tvm.nd.array(a_np, dev)
w = tvm.nd.array(w_np, dev)
b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), dev)

func1 = tvm.build(s1, [A, W, B], tvm.target.Target(target_hexagon, host=target_hexagon))
func2 = tvm.build(s2, [A, W, C], tvm.target.Target(target_hexagon, host=target_hexagon))

mod1 = hexagon_session.load_module(func1)
mod2 = hexagon_session.load_module(func2)

mod1(a, w, b)
mod2(a, w, c)
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5)
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-5)


class TestConv2DTranspose_1(BaseConv2DTransposeTests):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you combine these three classes using this patter:
batch, in_channel, ... = tvm.testing.parameters((1, (3, 8), ...)

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

also rename the class to TestConv2DTranspose

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the suggestion. Have addressed both in the next commit.


batch = tvm.testing.parameter(1)
in_channel = tvm.testing.parameter(3, 8)
in_size = tvm.testing.parameter((224, 224))
num_filter = tvm.testing.parameter(1, 8)
stride = tvm.testing.parameter((1, 1))
padding = tvm.testing.parameter((0, 0, 0, 0))
output_padding = tvm.testing.parameter((0, 0))


class TestConv2DTranspose_2(BaseConv2DTransposeTests):

batch = tvm.testing.parameter(1)
in_channel = tvm.testing.parameter(512)
in_size = tvm.testing.parameter((8, 1))
num_filter = tvm.testing.parameter(128)
stride = tvm.testing.parameter((31, 1))
padding = tvm.testing.parameter((0, 0, 0, 0))
output_padding = tvm.testing.parameter((0, 0))


class TestConv2DTranspose_3(BaseConv2DTransposeTests):

batch = tvm.testing.parameter(1)
in_channel = tvm.testing.parameter(32)
in_size = tvm.testing.parameter((8192, 1))
num_filter = tvm.testing.parameter(1)
stride = tvm.testing.parameter((1, 1))
padding = tvm.testing.parameter((0, 0, 0, 0))
output_padding = tvm.testing.parameter((0, 0))