-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Hexagon] Add schedule and test for conv2d_transpose_nchw (#11175)
* Add test for registered scheduales - depthwise_conv2d * added more test to depthwise_conv2 * adding new line at the end of the file * reformatted the file * resolve comments * add schedule and tests for conv2d_transpose_nchw * registering conv2d_transpose strategy and clean up test
- Loading branch information
Showing
3 changed files
with
203 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
157 changes: 157 additions & 0 deletions
157
tests/python/contrib/test_hexagon/topi/test_conv2d_transpose.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Test code for transposed convolution.""" | ||
import numpy as np | ||
import tvm | ||
import tvm.testing | ||
from tvm import te | ||
from tvm import topi | ||
import tvm.topi.testing | ||
from tvm.contrib.pickle_memoize import memoize | ||
from tvm.topi.utils import get_const_tuple | ||
from ..conftest import requires_hexagon_toolchain | ||
|
||
|
||
# TODO Should add kernal to tvm.testing.fixture | ||
|
||
random_seed = tvm.testing.parameter(0) | ||
|
||
|
||
@tvm.testing.fixture | ||
def shift_shape(batch): | ||
return batch | ||
|
||
|
||
@tvm.testing.fixture | ||
def shift_shape(in_channel): | ||
return in_channel | ||
|
||
|
||
@tvm.testing.fixture | ||
def shift_shape(in_size): | ||
return in_size | ||
|
||
|
||
@tvm.testing.fixture | ||
def shift_shape(num_filter): | ||
return num_filter | ||
|
||
|
||
@tvm.testing.fixture | ||
def shift_shape(stride): | ||
return stride | ||
|
||
|
||
@tvm.testing.fixture | ||
def shift_shape(padding): | ||
return padding | ||
|
||
|
||
@tvm.testing.fixture | ||
def shift_shape(output_padding): | ||
return output_padding | ||
|
||
|
||
class BaseConv2DTransposeTests: | ||
@requires_hexagon_toolchain | ||
def test_conv2d( | ||
self, | ||
hexagon_session, | ||
batch, | ||
in_channel, | ||
in_size, | ||
num_filter, | ||
stride, | ||
padding, | ||
output_padding, | ||
random_seed, | ||
): | ||
|
||
target_hexagon = tvm.target.hexagon("v68") | ||
|
||
in_height, in_width = in_size | ||
kernel_height, kernel_width = (1, 1) | ||
stride_height, stride_width = stride | ||
pad_top, pad_left, pad_bottom, pad_right = padding | ||
|
||
A = te.placeholder((batch, in_channel, in_height, in_width), name="A") | ||
W = te.placeholder((in_channel, num_filter, kernel_height, kernel_width), name="W") | ||
|
||
a_shape = get_const_tuple(A.shape) | ||
w_shape = get_const_tuple(W.shape) | ||
dtype = A.dtype | ||
|
||
def get_ref_data(): | ||
|
||
np.random.seed(random_seed) | ||
a_np = np.random.uniform(size=a_shape).astype(dtype) | ||
w_np = np.random.uniform(size=w_shape).astype(dtype) | ||
b_np = tvm.topi.testing.conv2d_transpose_nchw_python( | ||
a_np, w_np, stride, padding, output_padding | ||
) | ||
c_np = np.maximum(b_np, 0) | ||
return a_np, w_np, b_np, c_np | ||
|
||
a_np, w_np, b_np, c_np = get_ref_data() | ||
|
||
fcompute_args = ( | ||
A, | ||
W, | ||
[stride_height, stride_width], | ||
[pad_top, pad_left, pad_bottom, pad_right], | ||
A.dtype, | ||
output_padding, | ||
) | ||
|
||
with tvm.target.Target(target_hexagon): | ||
fcompute = topi.nn.conv2d_transpose_nchw | ||
fschedule = topi.hexagon.schedule_conv2d_transpose_nchw | ||
B = fcompute(*fcompute_args) | ||
C = topi.nn.relu(B) | ||
s1 = fschedule([B]) | ||
s2 = fschedule([C]) | ||
|
||
dev = hexagon_session.device | ||
|
||
a = tvm.nd.array(a_np, dev) | ||
w = tvm.nd.array(w_np, dev) | ||
b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), dev) | ||
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), dev) | ||
|
||
func1 = tvm.build(s1, [A, W, B], tvm.target.Target(target_hexagon, host=target_hexagon)) | ||
func2 = tvm.build(s2, [A, W, C], tvm.target.Target(target_hexagon, host=target_hexagon)) | ||
|
||
mod1 = hexagon_session.load_module(func1) | ||
mod2 = hexagon_session.load_module(func2) | ||
|
||
mod1(a, w, b) | ||
mod2(a, w, c) | ||
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-5) | ||
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-5) | ||
|
||
|
||
class TestConv2DTranspose(BaseConv2DTransposeTests): | ||
|
||
(batch, in_channel, in_size, num_filter, stride) = tvm.testing.parameters( | ||
(1, 3, (224, 224), 1, (1, 1)), | ||
(1, 8, (224, 224), 1, (1, 1)), | ||
(1, 512, (8, 1), 128, (31, 1)), | ||
(1, 32, (8192, 1), 1, (1, 1)), | ||
) | ||
|
||
padding = tvm.testing.parameter((0, 0, 0, 0)) | ||
output_padding = tvm.testing.parameter((0, 0)) |