Skip to content

Commit

Permalink
[BYOC][ETHOSN] Add support for quantized convolution (#6335)
Browse files Browse the repository at this point in the history
* [BYOC][ETHOSN] Add support for quantized convolution

This PR adds support for quantized convolution. This
includes mapping it via a composite function and all
the necessary methods to convert from Relay to the
APIs in Support Library.


Co-authored-by: Leo Blonk <[email protected]>
Co-authored-by: Tristan O'Connor <[email protected]>

* Fix padding change

Change-Id: I0794b0ac6190478e2d1b858ad0dd90f37fc0207b

* Add docs to Tvm2Npu methods

Change-Id: Iab865619b449a3d0dd6bb0dbdcb198acd529fc4e

* Remove generate tests

Change-Id: I51f90499f7ce82a1ce49f0731d3d50627e1d0225

Co-authored-by: Leo Blonk <[email protected]>
Co-authored-by: Tristan O'Connor <[email protected]>
  • Loading branch information
3 people authored Aug 27, 2020
1 parent e35b7fc commit 30cd230
Show file tree
Hide file tree
Showing 7 changed files with 486 additions and 2 deletions.
26 changes: 26 additions & 0 deletions python/tvm/relay/op/contrib/ethosn.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,9 @@
"""Arm(R) Ethos(TM) -N NPU supported operators."""
from enum import Enum
import tvm.ir
from ...dataflow_pattern import wildcard, is_op, is_constant
from ... import qnn as _qnn
from .register import register_pattern_table
from . import _ethosn as support


Expand All @@ -40,6 +42,30 @@ def ethosn_available():
return Available.SW_AND_HW if hw else Available.SW_ONLY


@register_pattern_table("ethos-n")
def pattern_table():
"""Get the Ethos-N compiler pattern table."""
def qnn_conv_pattern():
pattern = is_op('nn.pad')(wildcard()) | wildcard()
pattern = is_op('qnn.conv2d')(
pattern, is_constant(), is_constant(), is_constant(), is_constant(), is_constant())
pattern = is_op('nn.bias_add')(pattern, is_constant())
pattern = is_op('qnn.requantize')(
pattern, is_constant(), is_constant(), is_constant(), is_constant())
return pattern

def check_conv2d(extract):
"""Check if a conv2d is supported by Ethos-N."""
if not ethosn_available():
return False

return support.conv2d(extract)

return [
("ethos-n.qnn_conv2d", qnn_conv_pattern(), check_conv2d),
]


@tvm.ir.register_op_attr("qnn.concatenate", "target.ethos-n")
def qnn_concatenate(attrs, args):
"""Check if a concatenate is supported by Ethos-N."""
Expand Down
43 changes: 41 additions & 2 deletions src/relay/backend/contrib/ethosn/codegen.cc
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,16 @@ bool IsEthosnOp(const Call& call, const std::string& op_name) {
}
}

bool IsEthosnFunc(const Call& call, const std::string& op_name) {
if (call->op->IsInstance<FunctionNode>()) {
Function func = Downcast<Function>(call->op);
CHECK(func.defined());
auto name_node = func->GetAttr<String>(attr::kComposite);
return name_node.value() == op_name;
}
return false;
}

std::map<Expr, std::vector<sl::TensorInfo>> InferTensorsVisitor::Infer(const Expr& expr) {
tensor_table_.clear();
CHECK(expr->checked_type().defined());
Expand All @@ -69,7 +79,11 @@ void InferTensorsVisitor::InferCall(const CallNode* cn) {
EthosnError err;
Call call = GetRef<Call>(cn);
// Determine call -> NPU mapping
if (IsEthosnOp(call, "qnn.concatenate")) {
if (IsEthosnFunc(call, "ethos-n.qnn_conv2d")) {
ConvolutionParams params;
err += EthosnAPI::QnnConv2d(cn->op.as<FunctionNode>()->body, &params);
tensor_table_[cn->args[0]] = {params.activation_info};
} else if (IsEthosnOp(call, "qnn.concatenate")) {
ConcatenateParams params;
err = EthosnAPI::Concatenate(call, &params);
tensor_table_[cn->args[0]] = params.input_infos;
Expand Down Expand Up @@ -181,7 +195,10 @@ sl::TensorsAndId ConstructNetworkVisitor::HandleCall(const CallNode* cn) {
sl::TensorAndId<sl::Operand> tensor;
sl::TensorsAndId tensors;
// Determine call -> NPU mapping
if (IsEthosnOp(call, "qnn.concatenate")) {
if (IsEthosnFunc(call, "ethos-n.qnn_conv2d")) {
if ((err = MakeConvolutionLayer(call, &tensor))) ReportFatalError(call, err);
return MakeOps(tensor);
} else if (IsEthosnOp(call, "qnn.concatenate")) {
if ((err = MakeConcatenateLayer(call, &tensor))) ReportFatalError(call, err);
return MakeOps(tensor);
} else if (IsEthosnOp(call, "split")) {
Expand Down Expand Up @@ -227,6 +244,28 @@ void ConstructNetworkVisitor::VisitLeaf(const Expr& expr) {
if (!expr->IsInstance<FunctionNode>()) MixedModeVisitor::VisitLeaf(expr);
}

EthosnError ConstructNetworkVisitor::MakeConvolutionLayer(const Call& call,
sl::TensorAndId<sl::Operand>* out) {
ConvolutionParams params;
if (auto err = EthosnAPI::QnnConv2d(call->op.as<FunctionNode>()->body, &params)) {
return err;
}

auto activation = operand_table_[call->args[0]][0];
auto weights = AddConstant(network_, params.weights_info, params.raw_weights).tensor;
auto bias = AddConstant(network_, params.bias_info, params.raw_bias).tensor;
try {
if (params.is_depthwise) {
*out = AddDepthwiseConvolution(network_, *activation, *bias, *weights, params.conv_info);
} else {
*out = AddConvolution(network_, *activation, *bias, *weights, params.conv_info);
}
} catch (const sl::NotSupportedException& e) {
return EthosnError(e.what());
}
return EthosnError();
}

EthosnError ConstructNetworkVisitor::MakeConcatenateLayer(const Call& call,
sl::TensorAndId<sl::Operand>* out) {
ConcatenateParams params;
Expand Down
1 change: 1 addition & 0 deletions src/relay/backend/contrib/ethosn/codegen_ethosn.h
Original file line number Diff line number Diff line change
Expand Up @@ -197,6 +197,7 @@ class ConstructNetworkVisitor : public MixedModeVisitor, private ErrorReportingP
void VisitLeaf(const Expr& expr) final;

// Make a support library operand from a Call
EthosnError MakeConvolutionLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeConcatenateLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeSplitLayer(const Call& call, sl::TensorsAndId* outs);

Expand Down
190 changes: 190 additions & 0 deletions src/relay/backend/contrib/ethosn/ethosn_api.cc
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,105 @@ namespace relay {
namespace contrib {
namespace ethosn {

EthosnError EthosnAPI::QnnConv2d(const Expr& expr, ConvolutionParams* params) {
Call requantize = Downcast<Call>(expr);
Call bias_add = Downcast<Call>(requantize->args[0]);
Call conv = Downcast<Call>(bias_add->args[0]);
Call pad;
if (conv->args[0]->IsInstance<CallNode>() &&
Downcast<Call>(conv->args[0])->op == Op::Get("nn.pad"))
pad = Downcast<Call>(conv->args[0]);
const auto& conv_attr = conv->attrs.as<Conv2DAttrs>();

// Extract the quantization params from the arguments
int input_zero_point;
int kernel_zero_point;
int output_zero_point;
float input_scale;
float kernel_scale;
float output_scale;
EthosnError err = AsConstant<int>(conv->args[2], &input_zero_point);
err += AsConstant<int>(conv->args[3], &kernel_zero_point);
err += AsConstant<int>(requantize->args[4], &output_zero_point);
err += AsConstant<float>(conv->args[4], &input_scale);
err += AsConstant<float>(conv->args[5], &kernel_scale);
err += AsConstant<float>(requantize->args[3], &output_scale);

// Convert quantization params
sl::QuantizationInfo data_q_info;
sl::QuantizationInfo weights_q_info;
sl::QuantizationInfo bias_q_info;
sl::QuantizationInfo output_q_info;
err += Tvm2Npu(input_zero_point, input_scale, &data_q_info);
err += Tvm2Npu(kernel_zero_point, kernel_scale, &weights_q_info);
err += Tvm2Npu(0, data_q_info.m_Scale * weights_q_info.m_Scale, &bias_q_info);
err += Tvm2Npu(output_zero_point, output_scale, &output_q_info);

// Convert convolution attributes
sl::Padding padding;
if (pad.defined()) {
Tvm2Npu(conv_attr->padding, &padding);
// Don't support both standalone operator padding and attribute defined padding
if (padding != sl::Padding({0, 0, 0, 0})) {
err += EthosnError(
ErrStrm() << "both op and attr padding exist, must be either op/attr only or no padding");
}
err += Tvm2Npu(pad->attrs.as<PadAttrs>()->pad_width, &padding);
} else {
err += Tvm2Npu(conv_attr->padding, &padding);
}
sl::Stride stride;
err += Tvm2Npu(conv_attr->strides, &stride);
// Dilation is not supported
std::array<uint32_t, 4> dilation = {1, 1, 1, 1};
AsArray(conv_attr->dilation, &dilation);
if (conv_attr->dilation.size() != 2 || dilation[0] != 1 || dilation[1] != 1) {
err +=
EthosnError(ErrStrm() << "dilation=" << conv_attr->dilation << ", dilation must = [1, 1]");
}
// Create convolution info
params->conv_info = sl::ConvolutionInfo(padding, stride, output_q_info);

// Create data info
const TensorTypeNode* data_dtype;
if (pad.defined()) {
data_dtype = pad->args[0]->checked_type().as<TensorTypeNode>();
} else {
data_dtype = conv->args[0]->checked_type().as<TensorTypeNode>();
}
sl::TensorShape activation_tensor_shape;
sl::DataType activation_data_type;
err += Tvm2Npu(data_dtype->shape, &activation_tensor_shape);
err += Tvm2Npu(data_dtype->dtype, &activation_data_type);
params->activation_info = sl::TensorInfo(activation_tensor_shape, activation_data_type,
sl::DataFormat::NHWC, data_q_info);

// Create weights info
params->is_depthwise = conv_attr->channels.defined() &&
tvm::tir::ExprDeepEqual()(conv_attr->channels, conv_attr->groups) &&
conv_attr->groups != 1;

const auto* weights_dtype = conv->args[1]->checked_type().as<TensorTypeNode>();
sl::TensorShape weights_tensor_shape;
sl::DataType weights_data_type;
sl::DataFormat weights_data_format;
// Ignore the error here because weights don't have a batch axis
Tvm2Npu(weights_dtype->shape, &weights_tensor_shape);
err += Tvm2Npu(weights_dtype->dtype, &weights_data_type);
err += Tvm2Npu(params->is_depthwise ? "HWIM" : "HWIO", &weights_data_format);
params->weights_info =
sl::TensorInfo(weights_tensor_shape, weights_data_type, weights_data_format, weights_q_info);
params->raw_weights = conv->args[1].as<ConstantNode>()->data->data;

// Create bias info
params->bias_info = sl::TensorInfo(
{1, 1, 1, params->is_depthwise ? weights_tensor_shape[2] : weights_tensor_shape[3]},
sl::DataType::INT32_QUANTIZED, sl::DataFormat::NHWC, bias_q_info);
params->raw_bias = bias_add->args[1].as<ConstantNode>()->data->data;

return err;
}

EthosnError EthosnAPI::Concatenate(const Expr& expr, ConcatenateParams* params) {
Call call = Downcast<Call>(expr);
const auto& attrs = call->attrs.as<ConcatenateAttrs>();
Expand Down Expand Up @@ -107,6 +206,60 @@ EthosnError EthosnAPI::Split(const Expr& expr, SplitParams* params) {
return err;
}

EthosnError EthosnAPI::Tvm2Npu(const Array<IndexExpr>& padding, sl::Padding* npu_padding) {
std::array<uint32_t, 4> dim;
if (EthosnError err = AsArray<IndexExpr, uint32_t>(padding, &dim)) {
return err;
}
switch (padding.size()) {
case 1:
*npu_padding = sl::Padding(dim[0], dim[0], dim[0], dim[0]);
break;
case 2:
// Height, width -> top, bottom, left, right
*npu_padding = sl::Padding(dim[0], dim[0], dim[1], dim[1]);
break;
case 4:
// Top, left, bottom, right -> top, bottom, left, right
*npu_padding = sl::Padding(dim[0], dim[2], dim[1], dim[3]);
break;
default:
return EthosnError(ErrStrm() << "padding tuple size=" << padding.size()
<< ", padding tuple size must be {1, 2, 4}");
}
return EthosnError();
}

EthosnError EthosnAPI::Tvm2Npu(const Array<IndexExpr>& strides, sl::Stride* npu_stride) {
if (strides.size() != 2) {
return EthosnError(ErrStrm() << "stride size=" << strides.size() << ", stride size must = 2");
}
std::array<uint32_t, 4> dim;
if (EthosnError err = AsArray<IndexExpr, uint32_t>(strides, &dim)) {
return err;
}
*npu_stride = sl::Stride(dim[1], dim[0]);
return EthosnError();
}

EthosnError EthosnAPI::Tvm2Npu(const std::string& dformat, sl::DataFormat* data_format) {
if (dformat == "NCHW") {
*data_format = sl::DataFormat::NCHW;
return EthosnError();
} else if (dformat == "NHWC") {
*data_format = sl::DataFormat::NHWC;
return EthosnError();
} else if (dformat == "HWIO") {
*data_format = sl::DataFormat::HWIO;
return EthosnError();
} else if (dformat == "HWIM") {
*data_format = sl::DataFormat::HWIM;
return EthosnError();
}
return EthosnError(ErrStrm() << "format=" << dformat
<< ", format must be {NCHW, NHWC, HWIO, HWIM}");
}

EthosnError EthosnAPI::Tvm2Npu(const Array<IndexExpr>& shape, sl::TensorShape* npu_shape) {
EthosnError err = AsArray<IndexExpr, uint32_t>(shape, npu_shape);
if (npu_shape->front() != 1) {
Expand All @@ -128,6 +281,29 @@ EthosnError EthosnAPI::Tvm2Npu(const tvm::DataType& dtype, sl::DataType* data_ty
return EthosnError(ErrStrm() << "dtype=\'" << dtype << "\', dtype must be either uint8 or int32");
}

EthosnError EthosnAPI::Tvm2Npu(int32_t zero_point, float scale, sl::QuantizationInfo* npu_qinfo) {
*npu_qinfo = sl::QuantizationInfo(zero_point, scale);
return EthosnError();
}

EthosnError EthosnAPI::Tvm2Npu(const Array<Array<Integer>>& padding, sl::Padding* npu_padding) {
if (padding.size() != 4) {
return EthosnError(ErrStrm() << "padding tuple size=" << padding.size()
<< ", padding tuple size must = 4");
}
Array<IndexExpr> reduced_padding;
reduced_padding.push_back(padding[1][0]);
reduced_padding.push_back(padding[1][1]);
reduced_padding.push_back(padding[2][0]);
reduced_padding.push_back(padding[2][1]);
std::array<uint32_t, 4> dim;
if (EthosnError err = AsArray<IndexExpr, uint32_t>(reduced_padding, &dim)) {
return err;
}
*npu_padding = sl::Padding(dim[0], dim[1], dim[2], dim[3]);
return EthosnError();
}

// Convert an array of IntImmNodes into ValueT
// IndexT type of Array indexing variable
// ValueT type of resulting value
Expand Down Expand Up @@ -158,6 +334,20 @@ EthosnError EthosnAPI::AsConstant(const Expr& expr, T* out) {
return EthosnError();
}

TVM_REGISTER_GLOBAL("relay.ethos-n.support.conv2d")
.set_body([](tvm::TVMArgs args, tvm::TVMRetValue* rv) {
Call call = args[0];
ConvolutionParams params;
auto err = EthosnAPI::QnnConv2d(call, &params);
if (params.is_depthwise) {
*rv = !err && sl::IsDepthwiseConvolutionSupported(params.bias_info, params.weights_info,
params.conv_info, params.activation_info);
} else {
*rv = !err && sl::IsConvolutionSupported(params.bias_info, params.weights_info,
params.conv_info, params.activation_info);
}
});

TVM_REGISTER_GLOBAL("relay.ethos-n.support.concatenate")
.set_body([](tvm::TVMArgs args, tvm::TVMRetValue* rv) {
Call call = args[0];
Expand Down
22 changes: 22 additions & 0 deletions src/relay/backend/contrib/ethosn/ethosn_api.h
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,16 @@ namespace ethosn {

namespace sl = ::ethosn::support_library;

struct ConvolutionParams {
sl::ConvolutionInfo conv_info;
sl::TensorInfo activation_info;
sl::TensorInfo weights_info;
sl::TensorInfo bias_info;
void* raw_weights = nullptr;
void* raw_bias = nullptr;
bool is_depthwise = false;
};

struct ConcatenateParams {
sl::QuantizationInfo qInfo;
sl::ConcatenationInfo concat_info = sl::ConcatenationInfo(1, qInfo);
Expand Down Expand Up @@ -115,6 +125,8 @@ class EthosnError {
*/
class EthosnAPI {
public:
/*! \brief Extract the Support Library convolution params from an ethos-n.qnn_conv2d func */
static EthosnError QnnConv2d(const Expr& expr, ConvolutionParams* params);
/*! \brief Extract the Support Library concatenate params from a Relay qnn.concatenate call */
static EthosnError Concatenate(const Expr& expr, ConcatenateParams* params);
/*! \brief Extract the Support Library split params from a Relay split call */
Expand All @@ -125,6 +137,16 @@ class EthosnAPI {
static EthosnError Tvm2Npu(const Array<IndexExpr>& shape, sl::TensorShape* npu_shape);
/*! \brief Convert a TVM data type to a SL data type */
static EthosnError Tvm2Npu(const tvm::DataType& dtype, sl::DataType* data_type);
/*! \brief Convert TVM 1D padding to SL padding */
static EthosnError Tvm2Npu(const Array<IndexExpr>& padding, sl::Padding* npu_padding);
/*! \brief Convert TVM 1D striding to SL striding */
static EthosnError Tvm2Npu(const Array<IndexExpr>& strides, sl::Stride* npu_stride);
/*! \brief Convert TVM data format to SL data format */
static EthosnError Tvm2Npu(const std::string& dformat, sl::DataFormat* data_format);
/*! \brief Convert TVM quantization info to SL quantization info */
static EthosnError Tvm2Npu(int32_t zero_point, float scale, sl::QuantizationInfo* npu_qinfo);
/*! \brief Convert TVM 2D padding to SL padding */
static EthosnError Tvm2Npu(const Array<Array<Integer>>& padding, sl::Padding* npu_padding);

// Convert an array of IntImmNodes into ValueT
// IndexT type of Array indexing variable
Expand Down
2 changes: 2 additions & 0 deletions tests/python/contrib/test_ethosn/infrastructure.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,8 @@ def build(mod, params, npu=True, expected_host_ops=0, npu_partitions=1):
f = relay.build_module.bind_params_by_name(mod["main"], params)
mod = tvm.IRModule()
mod["main"] = f
pattern = get_pattern_table("ethos-n")
mod = relay.transform.MergeComposite(pattern)(mod)
mod = relay.transform.AnnotateTarget("ethos-n")(mod)
mod = relay.transform.MergeCompilerRegions()(mod)
mod = relay.transform.PartitionGraph()(mod)
Expand Down
Loading

0 comments on commit 30cd230

Please sign in to comment.