Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Allow test to converge #8351

Merged
merged 4 commits into from
Oct 21, 2017
Merged

Allow test to converge #8351

merged 4 commits into from
Oct 21, 2017

Conversation

cjolivier01
Copy link
Member

Description

(Brief description on what this PR is about)

Checklist

Essentials

  • Passed code style checking (make lint)
  • Changes are complete (i.e. I finished coding on this PR)
  • All changes have test coverage
  • For user-facing API changes, API doc string has been updated.
  • To my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change

Changes

  • Feature1, tests, (and when applicable, API doc)
  • Feature2, tests, (and when applicable, API doc)

Comments

  • If this change is a backward incompatible change, why must this change be made.
  • Intersting edge cases to note here

@piiswrong piiswrong merged commit 72b0051 into apache:master Oct 21, 2017
cjolivier01 added a commit to cjolivier01/mxnet that referenced this pull request Oct 22, 2017
* Allow test to converge

* Trigger build

* Trigger build

* Trigger build
cjolivier01 added a commit to cjolivier01/mxnet that referenced this pull request Oct 22, 2017
* Allow test to converge

* Trigger build

* Trigger build

* Trigger build
cjolivier01 added a commit that referenced this pull request Oct 22, 2017
* Timing output for test_factorization_module when Verbose enabled

* Trigger build

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (#8369)

* Allow test to converge (#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (#7988)

* [Perl] emulate Python zip() for Perl (#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (#8376)

Fix a typo in the example readme.
cjolivier01 added a commit that referenced this pull request Oct 23, 2017
* CPU optimization for ActivationOp

Significant improvement on CPU (several magnitudes of order in some cases, especially on backward pass).
Very slight improvement on GPU.

OLD MSHADOW APPROACH
--------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 18.948 ms, avg: 0.037896 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.658 ms, avg: 0.003316 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 57.973 ms, avg: 0.115946 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 4.748 ms, avg: 0.009496 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 703.446 ms, avg: 1.40689 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 56.255 ms, avg: 0.11251 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 2107.77 ms, avg: 4.21554 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 168.483 ms, avg: 0.336966 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 24122.2 ms, avg: 48.2443 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1908.7 ms, avg: 3.8174 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.637 ms, avg: 0.003274 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.665 ms, avg: 0.00333 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.562 ms, avg: 0.003124 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.661 ms, avg: 0.003322 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.635 ms, avg: 0.00327 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.702 ms, avg: 0.003404 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.83 ms, avg: 0.00366 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.041 ms, avg: 0.004082 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.08 ms, avg: 0.00416 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.688 ms, avg: 0.005376 ms X 500 passes

NEW MXNET_OP APPROACH
---------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 80.748 ms, avg: 0.161496 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.176 ms, avg: 0.002352 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 7.881 ms, avg: 0.015762 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 2.181 ms, avg: 0.004362 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 111.48 ms, avg: 0.22296 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 5.408 ms, avg: 0.010816 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 333.439 ms, avg: 0.666878 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 21.331 ms, avg: 0.042662 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 3429.19 ms, avg: 6.85837 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 286.324 ms, avg: 0.572648 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.618 ms, avg: 0.003236 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.671 ms, avg: 0.003342 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.629 ms, avg: 0.003258 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.728 ms, avg: 0.003456 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.753 ms, avg: 0.003506 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.756 ms, avg: 0.003512 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.704 ms, avg: 0.003408 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.791 ms, avg: 0.003582 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.032 ms, avg: 0.004064 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.143 ms, avg: 0.004286 ms X 500 passes

* lint

* Trigger build

* Trigger build

* Negative begin and end support for csr slice (#8241)

* negative index support for sparse slice

* fix lint

* getitem(int) for csr ndarray, support a[-1]

* remove unneccessary argument

* unittest and doc update

* Preparing for 0.12.0.rc0: Final changes before RC (#8301)

* Final changes before RC

* Updates to NEWS.md

* Updates

* Enable smoothing in softmax operator (#8125)

* v0.12 regression: Fix registration of children for Block (#8277)

* Fix Block not registering children

If the attribute was already set to something different than Block (e.g. None),
it was not being registered.

* fix if / elif for block children registration

* trigger test

* Add fix from #8152

* Add tests from #8152

* Revert "[CMAKE] Fix windows cmake build" (#8311)

* Revert "Added my code signing key (#8293)"

This reverts commit 22ab185.

* Revert "[CMAKE] Fix windows cmake build (#8227)"

This reverts commit 1c1c788.

* fixed broken links. https was pointing to http for mxnet.io (#8300)

* Update rnn.md (#8320)

* fluent methods for missed ops (#8329)

* update ps lite (#8327)

* Fix unused type warning (#8316)

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (#8369)

* Allow test to converge (#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (#7988)

* [Perl] emulate Python zip() for Perl (#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (#8376)

Fix a typo in the example readme.
cjolivier01 added a commit to cjolivier01/mxnet that referenced this pull request Oct 23, 2017
…che#8363)

* Timing output for test_factorization_module when Verbose enabled

* Trigger build

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.
cjolivier01 added a commit to cjolivier01/mxnet that referenced this pull request Oct 23, 2017
* CPU optimization for ActivationOp

Significant improvement on CPU (several magnitudes of order in some cases, especially on backward pass).
Very slight improvement on GPU.

OLD MSHADOW APPROACH
--------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 18.948 ms, avg: 0.037896 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.658 ms, avg: 0.003316 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 57.973 ms, avg: 0.115946 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 4.748 ms, avg: 0.009496 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 703.446 ms, avg: 1.40689 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 56.255 ms, avg: 0.11251 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 2107.77 ms, avg: 4.21554 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 168.483 ms, avg: 0.336966 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 24122.2 ms, avg: 48.2443 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1908.7 ms, avg: 3.8174 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.637 ms, avg: 0.003274 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.665 ms, avg: 0.00333 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.562 ms, avg: 0.003124 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.661 ms, avg: 0.003322 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.635 ms, avg: 0.00327 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.702 ms, avg: 0.003404 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.83 ms, avg: 0.00366 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.041 ms, avg: 0.004082 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.08 ms, avg: 0.00416 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.688 ms, avg: 0.005376 ms X 500 passes

NEW MXNET_OP APPROACH
---------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 80.748 ms, avg: 0.161496 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.176 ms, avg: 0.002352 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 7.881 ms, avg: 0.015762 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 2.181 ms, avg: 0.004362 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 111.48 ms, avg: 0.22296 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 5.408 ms, avg: 0.010816 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 333.439 ms, avg: 0.666878 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 21.331 ms, avg: 0.042662 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 3429.19 ms, avg: 6.85837 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 286.324 ms, avg: 0.572648 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.618 ms, avg: 0.003236 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.671 ms, avg: 0.003342 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.629 ms, avg: 0.003258 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.728 ms, avg: 0.003456 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.753 ms, avg: 0.003506 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.756 ms, avg: 0.003512 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.704 ms, avg: 0.003408 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.791 ms, avg: 0.003582 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.032 ms, avg: 0.004064 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.143 ms, avg: 0.004286 ms X 500 passes

* lint

* Trigger build

* Trigger build

* Negative begin and end support for csr slice (apache#8241)

* negative index support for sparse slice

* fix lint

* getitem(int) for csr ndarray, support a[-1]

* remove unneccessary argument

* unittest and doc update

* Preparing for 0.12.0.rc0: Final changes before RC (apache#8301)

* Final changes before RC

* Updates to NEWS.md

* Updates

* Enable smoothing in softmax operator (apache#8125)

* v0.12 regression: Fix registration of children for Block (apache#8277)

* Fix Block not registering children

If the attribute was already set to something different than Block (e.g. None),
it was not being registered.

* fix if / elif for block children registration

* trigger test

* Add fix from apache#8152

* Add tests from apache#8152

* Revert "[CMAKE] Fix windows cmake build" (apache#8311)

* Revert "Added my code signing key (apache#8293)"

This reverts commit 22ab185.

* Revert "[CMAKE] Fix windows cmake build (apache#8227)"

This reverts commit 1c1c788.

* fixed broken links. https was pointing to http for mxnet.io (apache#8300)

* Update rnn.md (apache#8320)

* fluent methods for missed ops (apache#8329)

* update ps lite (apache#8327)

* Fix unused type warning (apache#8316)

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.
cjolivier01 added a commit to cjolivier01/mxnet that referenced this pull request Oct 23, 2017
…che#8363)

* Timing output for test_factorization_module when Verbose enabled

* Trigger build

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.
cjolivier01 added a commit to cjolivier01/mxnet that referenced this pull request Oct 23, 2017
* CPU optimization for ActivationOp

Significant improvement on CPU (several magnitudes of order in some cases, especially on backward pass).
Very slight improvement on GPU.

OLD MSHADOW APPROACH
--------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 18.948 ms, avg: 0.037896 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.658 ms, avg: 0.003316 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 57.973 ms, avg: 0.115946 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 4.748 ms, avg: 0.009496 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 703.446 ms, avg: 1.40689 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 56.255 ms, avg: 0.11251 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 2107.77 ms, avg: 4.21554 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 168.483 ms, avg: 0.336966 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 24122.2 ms, avg: 48.2443 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1908.7 ms, avg: 3.8174 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.637 ms, avg: 0.003274 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.665 ms, avg: 0.00333 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.562 ms, avg: 0.003124 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.661 ms, avg: 0.003322 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.635 ms, avg: 0.00327 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.702 ms, avg: 0.003404 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.83 ms, avg: 0.00366 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.041 ms, avg: 0.004082 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.08 ms, avg: 0.00416 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.688 ms, avg: 0.005376 ms X 500 passes

NEW MXNET_OP APPROACH
---------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 80.748 ms, avg: 0.161496 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.176 ms, avg: 0.002352 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 7.881 ms, avg: 0.015762 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 2.181 ms, avg: 0.004362 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 111.48 ms, avg: 0.22296 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 5.408 ms, avg: 0.010816 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 333.439 ms, avg: 0.666878 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 21.331 ms, avg: 0.042662 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 3429.19 ms, avg: 6.85837 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 286.324 ms, avg: 0.572648 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.618 ms, avg: 0.003236 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.671 ms, avg: 0.003342 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.629 ms, avg: 0.003258 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.728 ms, avg: 0.003456 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.753 ms, avg: 0.003506 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.756 ms, avg: 0.003512 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.704 ms, avg: 0.003408 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.791 ms, avg: 0.003582 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.032 ms, avg: 0.004064 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.143 ms, avg: 0.004286 ms X 500 passes

* lint

* Trigger build

* Trigger build

* Negative begin and end support for csr slice (apache#8241)

* negative index support for sparse slice

* fix lint

* getitem(int) for csr ndarray, support a[-1]

* remove unneccessary argument

* unittest and doc update

* Preparing for 0.12.0.rc0: Final changes before RC (apache#8301)

* Final changes before RC

* Updates to NEWS.md

* Updates

* Enable smoothing in softmax operator (apache#8125)

* v0.12 regression: Fix registration of children for Block (apache#8277)

* Fix Block not registering children

If the attribute was already set to something different than Block (e.g. None),
it was not being registered.

* fix if / elif for block children registration

* trigger test

* Add fix from apache#8152

* Add tests from apache#8152

* Revert "[CMAKE] Fix windows cmake build" (apache#8311)

* Revert "Added my code signing key (apache#8293)"

This reverts commit 22ab185.

* Revert "[CMAKE] Fix windows cmake build (apache#8227)"

This reverts commit 1c1c788.

* fixed broken links. https was pointing to http for mxnet.io (apache#8300)

* Update rnn.md (apache#8320)

* fluent methods for missed ops (apache#8329)

* update ps lite (apache#8327)

* Fix unused type warning (apache#8316)

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.
crazy-cat pushed a commit to crazy-cat/incubator-mxnet that referenced this pull request Oct 26, 2017
* Allow test to converge

* Trigger build

* Trigger build

* Trigger build
crazy-cat pushed a commit to crazy-cat/incubator-mxnet that referenced this pull request Oct 26, 2017
…che#8363)

* Timing output for test_factorization_module when Verbose enabled

* Trigger build

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.
crazy-cat pushed a commit to crazy-cat/incubator-mxnet that referenced this pull request Oct 26, 2017
* CPU optimization for ActivationOp

Significant improvement on CPU (several magnitudes of order in some cases, especially on backward pass).
Very slight improvement on GPU.

OLD MSHADOW APPROACH
--------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 18.948 ms, avg: 0.037896 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.658 ms, avg: 0.003316 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 57.973 ms, avg: 0.115946 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 4.748 ms, avg: 0.009496 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 703.446 ms, avg: 1.40689 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 56.255 ms, avg: 0.11251 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 2107.77 ms, avg: 4.21554 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 168.483 ms, avg: 0.336966 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 24122.2 ms, avg: 48.2443 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1908.7 ms, avg: 3.8174 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.637 ms, avg: 0.003274 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.665 ms, avg: 0.00333 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.562 ms, avg: 0.003124 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.661 ms, avg: 0.003322 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.635 ms, avg: 0.00327 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.702 ms, avg: 0.003404 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.83 ms, avg: 0.00366 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.041 ms, avg: 0.004082 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.08 ms, avg: 0.00416 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.688 ms, avg: 0.005376 ms X 500 passes

NEW MXNET_OP APPROACH
---------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 80.748 ms, avg: 0.161496 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.176 ms, avg: 0.002352 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 7.881 ms, avg: 0.015762 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 2.181 ms, avg: 0.004362 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 111.48 ms, avg: 0.22296 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 5.408 ms, avg: 0.010816 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 333.439 ms, avg: 0.666878 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 21.331 ms, avg: 0.042662 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 3429.19 ms, avg: 6.85837 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 286.324 ms, avg: 0.572648 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.618 ms, avg: 0.003236 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.671 ms, avg: 0.003342 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.629 ms, avg: 0.003258 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.728 ms, avg: 0.003456 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.753 ms, avg: 0.003506 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.756 ms, avg: 0.003512 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.704 ms, avg: 0.003408 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.791 ms, avg: 0.003582 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.032 ms, avg: 0.004064 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.143 ms, avg: 0.004286 ms X 500 passes

* lint

* Trigger build

* Trigger build

* Negative begin and end support for csr slice (apache#8241)

* negative index support for sparse slice

* fix lint

* getitem(int) for csr ndarray, support a[-1]

* remove unneccessary argument

* unittest and doc update

* Preparing for 0.12.0.rc0: Final changes before RC (apache#8301)

* Final changes before RC

* Updates to NEWS.md

* Updates

* Enable smoothing in softmax operator (apache#8125)

* v0.12 regression: Fix registration of children for Block (apache#8277)

* Fix Block not registering children

If the attribute was already set to something different than Block (e.g. None),
it was not being registered.

* fix if / elif for block children registration

* trigger test

* Add fix from apache#8152

* Add tests from apache#8152

* Revert "[CMAKE] Fix windows cmake build" (apache#8311)

* Revert "Added my code signing key (apache#8293)"

This reverts commit 22ab185.

* Revert "[CMAKE] Fix windows cmake build (apache#8227)"

This reverts commit 1c1c788.

* fixed broken links. https was pointing to http for mxnet.io (apache#8300)

* Update rnn.md (apache#8320)

* fluent methods for missed ops (apache#8329)

* update ps lite (apache#8327)

* Fix unused type warning (apache#8316)

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.
cjolivier01 added a commit that referenced this pull request Oct 28, 2017
* Fill optimizations

* Optimize IdentityCompute for CPU

* lint

* Fix unused type warning (#8316)

* remove unused variable

* CR comments

* CR comments

* Added _full operator

* Trigger build

* Trigger build

* Add _full to symbolic

* Merge conflict resolution fix

* lint

* Timing output for test_factorization_module when Verbose enabled (#8363)

* Timing output for test_factorization_module when Verbose enabled

* Trigger build

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (#8369)

* Allow test to converge (#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (#7988)

* [Perl] emulate Python zip() for Perl (#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (#8376)

Fix a typo in the example readme.

* Use omp_get_max_threads() when OMP_NUM_THREADS environment variable is set (#8379)

* CPU optimization for ActivationOp (#8296)

* CPU optimization for ActivationOp

Significant improvement on CPU (several magnitudes of order in some cases, especially on backward pass).
Very slight improvement on GPU.

OLD MSHADOW APPROACH
--------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 18.948 ms, avg: 0.037896 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.658 ms, avg: 0.003316 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 57.973 ms, avg: 0.115946 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 4.748 ms, avg: 0.009496 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 703.446 ms, avg: 1.40689 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 56.255 ms, avg: 0.11251 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 2107.77 ms, avg: 4.21554 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 168.483 ms, avg: 0.336966 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 24122.2 ms, avg: 48.2443 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1908.7 ms, avg: 3.8174 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.637 ms, avg: 0.003274 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.665 ms, avg: 0.00333 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.562 ms, avg: 0.003124 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.661 ms, avg: 0.003322 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.635 ms, avg: 0.00327 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.702 ms, avg: 0.003404 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.83 ms, avg: 0.00366 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.041 ms, avg: 0.004082 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.08 ms, avg: 0.00416 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.688 ms, avg: 0.005376 ms X 500 passes

NEW MXNET_OP APPROACH
---------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 80.748 ms, avg: 0.161496 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.176 ms, avg: 0.002352 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 7.881 ms, avg: 0.015762 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 2.181 ms, avg: 0.004362 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 111.48 ms, avg: 0.22296 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 5.408 ms, avg: 0.010816 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 333.439 ms, avg: 0.666878 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 21.331 ms, avg: 0.042662 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 3429.19 ms, avg: 6.85837 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 286.324 ms, avg: 0.572648 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.618 ms, avg: 0.003236 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.671 ms, avg: 0.003342 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.629 ms, avg: 0.003258 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.728 ms, avg: 0.003456 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.753 ms, avg: 0.003506 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.756 ms, avg: 0.003512 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.704 ms, avg: 0.003408 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.791 ms, avg: 0.003582 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.032 ms, avg: 0.004064 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.143 ms, avg: 0.004286 ms X 500 passes

* lint

* Trigger build

* Trigger build

* Negative begin and end support for csr slice (#8241)

* negative index support for sparse slice

* fix lint

* getitem(int) for csr ndarray, support a[-1]

* remove unneccessary argument

* unittest and doc update

* Preparing for 0.12.0.rc0: Final changes before RC (#8301)

* Final changes before RC

* Updates to NEWS.md

* Updates

* Enable smoothing in softmax operator (#8125)

* v0.12 regression: Fix registration of children for Block (#8277)

* Fix Block not registering children

If the attribute was already set to something different than Block (e.g. None),
it was not being registered.

* fix if / elif for block children registration

* trigger test

* Add fix from #8152

* Add tests from #8152

* Revert "[CMAKE] Fix windows cmake build" (#8311)

* Revert "Added my code signing key (#8293)"

This reverts commit 22ab185.

* Revert "[CMAKE] Fix windows cmake build (#8227)"

This reverts commit 1c1c788.

* fixed broken links. https was pointing to http for mxnet.io (#8300)

* Update rnn.md (#8320)

* fluent methods for missed ops (#8329)

* update ps lite (#8327)

* Fix unused type warning (#8316)

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (#8369)

* Allow test to converge (#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (#7988)

* [Perl] emulate Python zip() for Perl (#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (#8376)

Fix a typo in the example readme.

* Fix GPU copy

* Remove duplicate

* Trigger build
cjolivier01 added a commit that referenced this pull request Oct 28, 2017
* Memory set/copy speed assertions

* Memory set/copy speed assertions

* ..

* ..

* ..

* ..

* bounce some cache

* lint

* Timing output for test_factorization_module when Verbose enabled (#8363)

* Timing output for test_factorization_module when Verbose enabled

* Trigger build

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (#8369)

* Allow test to converge (#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (#7988)

* [Perl] emulate Python zip() for Perl (#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (#8376)

Fix a typo in the example readme.

* Use omp_get_max_threads() when OMP_NUM_THREADS environment variable is set (#8379)

* CPU optimization for ActivationOp (#8296)

* CPU optimization for ActivationOp

Significant improvement on CPU (several magnitudes of order in some cases, especially on backward pass).
Very slight improvement on GPU.

OLD MSHADOW APPROACH
--------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 18.948 ms, avg: 0.037896 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.658 ms, avg: 0.003316 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 57.973 ms, avg: 0.115946 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 4.748 ms, avg: 0.009496 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 703.446 ms, avg: 1.40689 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 56.255 ms, avg: 0.11251 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 2107.77 ms, avg: 4.21554 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 168.483 ms, avg: 0.336966 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 24122.2 ms, avg: 48.2443 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1908.7 ms, avg: 3.8174 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.637 ms, avg: 0.003274 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.665 ms, avg: 0.00333 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.562 ms, avg: 0.003124 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.661 ms, avg: 0.003322 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.635 ms, avg: 0.00327 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.702 ms, avg: 0.003404 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.83 ms, avg: 0.00366 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.041 ms, avg: 0.004082 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.08 ms, avg: 0.00416 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.688 ms, avg: 0.005376 ms X 500 passes

NEW MXNET_OP APPROACH
---------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 80.748 ms, avg: 0.161496 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.176 ms, avg: 0.002352 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 7.881 ms, avg: 0.015762 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 2.181 ms, avg: 0.004362 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 111.48 ms, avg: 0.22296 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 5.408 ms, avg: 0.010816 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 333.439 ms, avg: 0.666878 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 21.331 ms, avg: 0.042662 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 3429.19 ms, avg: 6.85837 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 286.324 ms, avg: 0.572648 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.618 ms, avg: 0.003236 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.671 ms, avg: 0.003342 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.629 ms, avg: 0.003258 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.728 ms, avg: 0.003456 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.753 ms, avg: 0.003506 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.756 ms, avg: 0.003512 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.704 ms, avg: 0.003408 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.791 ms, avg: 0.003582 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.032 ms, avg: 0.004064 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.143 ms, avg: 0.004286 ms X 500 passes

* lint

* Trigger build

* Trigger build

* Negative begin and end support for csr slice (#8241)

* negative index support for sparse slice

* fix lint

* getitem(int) for csr ndarray, support a[-1]

* remove unneccessary argument

* unittest and doc update

* Preparing for 0.12.0.rc0: Final changes before RC (#8301)

* Final changes before RC

* Updates to NEWS.md

* Updates

* Enable smoothing in softmax operator (#8125)

* v0.12 regression: Fix registration of children for Block (#8277)

* Fix Block not registering children

If the attribute was already set to something different than Block (e.g. None),
it was not being registered.

* fix if / elif for block children registration

* trigger test

* Add fix from #8152

* Add tests from #8152

* Revert "[CMAKE] Fix windows cmake build" (#8311)

* Revert "Added my code signing key (#8293)"

This reverts commit 22ab185.

* Revert "[CMAKE] Fix windows cmake build (#8227)"

This reverts commit 1c1c788.

* fixed broken links. https was pointing to http for mxnet.io (#8300)

* Update rnn.md (#8320)

* fluent methods for missed ops (#8329)

* update ps lite (#8327)

* Fix unused type warning (#8316)

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (#8369)

* Allow test to converge (#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (#7988)

* [Perl] emulate Python zip() for Perl (#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (#8376)

Fix a typo in the example readme.

* do gtest test

* add assert and do higher runs as performance test only (when performance test flag set)

* Trigger build

* lint

* Trigger build

* Sparse operator performance improvement (#8412)

* sparse rsprsp perf improvements

* Clean up

* dtype default to source_array.dtype for sparse ndarrays (#8403)

* derive default dtype/ctx from input for sparse ndarrays

* add gpu tests

* fix lint. add doc

* remove default_ctx code

* bug fix when passing dtype to array()

* update doc

* remove extra line

* also check ctx

* fix using default mean pixels (#8352)

* fix gluon.data.RecordFileDataset (#8353)

* upgrade MKL (#8378)

* Lint fix (#8402)

* Trigger build
rahul003 pushed a commit to rahul003/mxnet that referenced this pull request Jun 4, 2018
* Fill optimizations

* Optimize IdentityCompute for CPU

* lint

* Fix unused type warning (apache#8316)

* remove unused variable

* CR comments

* CR comments

* Added _full operator

* Trigger build

* Trigger build

* Add _full to symbolic

* Merge conflict resolution fix

* lint

* Timing output for test_factorization_module when Verbose enabled (apache#8363)

* Timing output for test_factorization_module when Verbose enabled

* Trigger build

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.

* Use omp_get_max_threads() when OMP_NUM_THREADS environment variable is set (apache#8379)

* CPU optimization for ActivationOp (apache#8296)

* CPU optimization for ActivationOp

Significant improvement on CPU (several magnitudes of order in some cases, especially on backward pass).
Very slight improvement on GPU.

OLD MSHADOW APPROACH
--------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 18.948 ms, avg: 0.037896 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.658 ms, avg: 0.003316 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 57.973 ms, avg: 0.115946 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 4.748 ms, avg: 0.009496 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 703.446 ms, avg: 1.40689 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 56.255 ms, avg: 0.11251 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 2107.77 ms, avg: 4.21554 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 168.483 ms, avg: 0.336966 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 24122.2 ms, avg: 48.2443 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1908.7 ms, avg: 3.8174 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.637 ms, avg: 0.003274 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.665 ms, avg: 0.00333 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.562 ms, avg: 0.003124 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.661 ms, avg: 0.003322 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.635 ms, avg: 0.00327 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.702 ms, avg: 0.003404 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.83 ms, avg: 0.00366 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.041 ms, avg: 0.004082 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.08 ms, avg: 0.00416 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.688 ms, avg: 0.005376 ms X 500 passes

NEW MXNET_OP APPROACH
---------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 80.748 ms, avg: 0.161496 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.176 ms, avg: 0.002352 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 7.881 ms, avg: 0.015762 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 2.181 ms, avg: 0.004362 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 111.48 ms, avg: 0.22296 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 5.408 ms, avg: 0.010816 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 333.439 ms, avg: 0.666878 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 21.331 ms, avg: 0.042662 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 3429.19 ms, avg: 6.85837 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 286.324 ms, avg: 0.572648 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.618 ms, avg: 0.003236 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.671 ms, avg: 0.003342 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.629 ms, avg: 0.003258 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.728 ms, avg: 0.003456 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.753 ms, avg: 0.003506 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.756 ms, avg: 0.003512 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.704 ms, avg: 0.003408 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.791 ms, avg: 0.003582 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.032 ms, avg: 0.004064 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.143 ms, avg: 0.004286 ms X 500 passes

* lint

* Trigger build

* Trigger build

* Negative begin and end support for csr slice (apache#8241)

* negative index support for sparse slice

* fix lint

* getitem(int) for csr ndarray, support a[-1]

* remove unneccessary argument

* unittest and doc update

* Preparing for 0.12.0.rc0: Final changes before RC (apache#8301)

* Final changes before RC

* Updates to NEWS.md

* Updates

* Enable smoothing in softmax operator (apache#8125)

* v0.12 regression: Fix registration of children for Block (apache#8277)

* Fix Block not registering children

If the attribute was already set to something different than Block (e.g. None),
it was not being registered.

* fix if / elif for block children registration

* trigger test

* Add fix from apache#8152

* Add tests from apache#8152

* Revert "[CMAKE] Fix windows cmake build" (apache#8311)

* Revert "Added my code signing key (apache#8293)"

This reverts commit 22ab185.

* Revert "[CMAKE] Fix windows cmake build (apache#8227)"

This reverts commit 1c1c788.

* fixed broken links. https was pointing to http for mxnet.io (apache#8300)

* Update rnn.md (apache#8320)

* fluent methods for missed ops (apache#8329)

* update ps lite (apache#8327)

* Fix unused type warning (apache#8316)

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.

* Fix GPU copy

* Remove duplicate

* Trigger build
rahul003 pushed a commit to rahul003/mxnet that referenced this pull request Jun 4, 2018
* Memory set/copy speed assertions

* Memory set/copy speed assertions

* ..

* ..

* ..

* ..

* bounce some cache

* lint

* Timing output for test_factorization_module when Verbose enabled (apache#8363)

* Timing output for test_factorization_module when Verbose enabled

* Trigger build

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.

* Use omp_get_max_threads() when OMP_NUM_THREADS environment variable is set (apache#8379)

* CPU optimization for ActivationOp (apache#8296)

* CPU optimization for ActivationOp

Significant improvement on CPU (several magnitudes of order in some cases, especially on backward pass).
Very slight improvement on GPU.

OLD MSHADOW APPROACH
--------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 18.948 ms, avg: 0.037896 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.658 ms, avg: 0.003316 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 57.973 ms, avg: 0.115946 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 4.748 ms, avg: 0.009496 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 703.446 ms, avg: 1.40689 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 56.255 ms, avg: 0.11251 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 2107.77 ms, avg: 4.21554 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 168.483 ms, avg: 0.336966 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 24122.2 ms, avg: 48.2443 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1908.7 ms, avg: 3.8174 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.637 ms, avg: 0.003274 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.665 ms, avg: 0.00333 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.562 ms, avg: 0.003124 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.661 ms, avg: 0.003322 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.635 ms, avg: 0.00327 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.702 ms, avg: 0.003404 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.83 ms, avg: 0.00366 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.041 ms, avg: 0.004082 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.08 ms, avg: 0.00416 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.688 ms, avg: 0.005376 ms X 500 passes

NEW MXNET_OP APPROACH
---------------------

CPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator CPU:  Timing [Forward] 80.748 ms, avg: 0.161496 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 1.176 ms, avg: 0.002352 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator CPU:  Timing [Forward] 7.881 ms, avg: 0.015762 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 2.181 ms, avg: 0.004362 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator CPU:  Timing [Forward] 111.48 ms, avg: 0.22296 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 5.408 ms, avg: 0.010816 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator CPU:  Timing [Forward] 333.439 ms, avg: 0.666878 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 21.331 ms, avg: 0.042662 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator CPU:  Timing [Forward] 3429.19 ms, avg: 6.85837 ms X 500 passes
Activation Operator CPU:  Timing [Backward] 286.324 ms, avg: 0.572648 ms X 500 passes

GPU
===

Timing: 50 iterations of 10 calls, shape = [1,1,28,28]
Activation Operator GPU:  Timing [Forward] 1.618 ms, avg: 0.003236 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.671 ms, avg: 0.003342 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [1,3,28,28]
Activation Operator GPU:  Timing [Forward] 1.629 ms, avg: 0.003258 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.728 ms, avg: 0.003456 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,1,18,32]
Activation Operator GPU:  Timing [Forward] 1.753 ms, avg: 0.003506 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.756 ms, avg: 0.003512 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [50,3,18,32]
Activation Operator GPU:  Timing [Forward] 1.704 ms, avg: 0.003408 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 1.791 ms, avg: 0.003582 ms X 500 passes

Timing: 50 iterations of 10 calls, shape = [20,3,128,128]
Activation Operator GPU:  Timing [Forward] 2.032 ms, avg: 0.004064 ms X 500 passes
Activation Operator GPU:  Timing [Backward] 2.143 ms, avg: 0.004286 ms X 500 passes

* lint

* Trigger build

* Trigger build

* Negative begin and end support for csr slice (apache#8241)

* negative index support for sparse slice

* fix lint

* getitem(int) for csr ndarray, support a[-1]

* remove unneccessary argument

* unittest and doc update

* Preparing for 0.12.0.rc0: Final changes before RC (apache#8301)

* Final changes before RC

* Updates to NEWS.md

* Updates

* Enable smoothing in softmax operator (apache#8125)

* v0.12 regression: Fix registration of children for Block (apache#8277)

* Fix Block not registering children

If the attribute was already set to something different than Block (e.g. None),
it was not being registered.

* fix if / elif for block children registration

* trigger test

* Add fix from apache#8152

* Add tests from apache#8152

* Revert "[CMAKE] Fix windows cmake build" (apache#8311)

* Revert "Added my code signing key (apache#8293)"

This reverts commit 22ab185.

* Revert "[CMAKE] Fix windows cmake build (apache#8227)"

This reverts commit 1c1c788.

* fixed broken links. https was pointing to http for mxnet.io (apache#8300)

* Update rnn.md (apache#8320)

* fluent methods for missed ops (apache#8329)

* update ps lite (apache#8327)

* Fix unused type warning (apache#8316)

* Trigger build

* Trigger build

* Misc fixes for sparse distributed training (apache#8345)

* remove mshadow::range in init_op.h

* add unit test

* remove pass by ptr, add unit test for pull empty wieghts

* fix range in key partition

* remove wrong comment

* remove change for partition

* remove unused var

* add int64 to arange. add checkpointing example

* Fix the Readme (apache#8369)

* Allow test to converge (apache#8351)

* Allow test to converge

* Trigger build

* Trigger build

* Trigger build

* Update cudnn_algoreg-inl.h (apache#7988)

* [Perl] emulate Python zip() for Perl (apache#8192)

* [Perl] emulate Python zip() for Perl

* [Perl] retool zip() uses away from the callback form

* add profile option for frontend profiling to image script (apache#8171)

* add profile option for frontend profiling to image script

* Update image_classification.py

* Update image_classification.py

* Fix Typo (classification) (apache#8376)

Fix a typo in the example readme.

* do gtest test

* add assert and do higher runs as performance test only (when performance test flag set)

* Trigger build

* lint

* Trigger build

* Sparse operator performance improvement (apache#8412)

* sparse rsprsp perf improvements

* Clean up

* dtype default to source_array.dtype for sparse ndarrays (apache#8403)

* derive default dtype/ctx from input for sparse ndarrays

* add gpu tests

* fix lint. add doc

* remove default_ctx code

* bug fix when passing dtype to array()

* update doc

* remove extra line

* also check ctx

* fix using default mean pixels (apache#8352)

* fix gluon.data.RecordFileDataset (apache#8353)

* upgrade MKL (apache#8378)

* Lint fix (apache#8402)

* Trigger build
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants