Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Specialize Median Accumulator #7376

Merged
merged 2 commits into from
Aug 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions datafusion/core/tests/memory_limit.rs
Original file line number Diff line number Diff line change
Expand Up @@ -68,12 +68,12 @@ async fn oom_sort() {
#[tokio::test]
async fn group_by_none() {
TestCase::new()
.with_query("select median(image) from t")
.with_query("select median(request_bytes) from t")
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Changed to request_bytes as median isn't well defined for string types, this would only "work" if there happened to be an odd number of values, or the query errored (as in this case)

❯ create table test(c varchar) as values ('foo'), ('world'), ('hello');
0 rows in set. Query took 0.005 seconds.

❯ select median(c) from test;
+----------------+
| MEDIAN(test.c) |
+----------------+
| hello          |
+----------------+
1 row in set. Query took 0.005 seconds.

❯ insert into test values ('bar');
+-------+
| count |
+-------+
| 1     |
+-------+
1 row in set. Query took 0.002 seconds.

❯ select median(c) from test;
Internal error: Operator + is not implemented for types Utf8("foo") and Utf8("hello"). This was likely caused by a bug in DataFusion's code and we would welcome that you file an bug report in our issue tracker

.with_expected_errors(vec![
"Resources exhausted: Failed to allocate additional",
"AggregateStream",
])
.with_memory_limit(20_000)
.with_memory_limit(2_000)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We need to lower this memory limit, as it is significantly more space-efficient now

.run()
.await
}
Expand Down
193 changes: 64 additions & 129 deletions datafusion/physical-expr/src/aggregate/median.rs
Original file line number Diff line number Diff line change
Expand Up @@ -20,13 +20,15 @@
use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use arrow::array::{Array, ArrayRef, UInt32Array};
use arrow::compute::sort_to_indices;
use arrow::array::{Array, ArrayRef};
use arrow::datatypes::{DataType, Field};
use datafusion_common::internal_err;
use arrow_array::cast::AsArray;
use arrow_array::{downcast_integer, ArrowNativeTypeOp, ArrowNumericType};
use arrow_buffer::ArrowNativeType;
use datafusion_common::{DataFusionError, Result, ScalarValue};
use datafusion_expr::Accumulator;
use std::any::Any;
use std::fmt::Formatter;
use std::sync::Arc;

/// MEDIAN aggregate expression. This uses a lot of memory because all values need to be
Expand Down Expand Up @@ -65,11 +67,29 @@ impl AggregateExpr for Median {
}

fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(MedianAccumulator {
data_type: self.data_type.clone(),
arrays: vec![],
all_values: vec![],
}))
use arrow_array::types::*;
macro_rules! helper {
($t:ty, $dt:expr) => {
Ok(Box::new(MedianAccumulator::<$t> {
data_type: $dt.clone(),
all_values: vec![],
}))
};
}
let dt = &self.data_type;
downcast_integer! {
dt => (helper, dt),
DataType::Float16 => helper!(Float16Type, dt),
DataType::Float32 => helper!(Float32Type, dt),
DataType::Float64 => helper!(Float64Type, dt),
DataType::Decimal128(_, _) => helper!(Decimal128Type, dt),
DataType::Decimal256(_, _) => helper!(Decimal256Type, dt),
_ => Err(DataFusionError::NotImplemented(format!(
"MedianAccumulator not supported for {} with {}",
self.name(),
self.data_type
))),
}
}

fn state_fields(&self) -> Result<Vec<Field>> {
Expand Down Expand Up @@ -106,159 +126,75 @@ impl PartialEq<dyn Any> for Median {
}
}

#[derive(Debug)]
/// The median accumulator accumulates the raw input values
/// as `ScalarValue`s
///
/// The intermediate state is represented as a List of scalar values updated by
/// `merge_batch` and a `Vec` of `ArrayRef` that are converted to scalar values
/// in the final evaluation step so that we avoid expensive conversions and
/// allocations during `update_batch`.
struct MedianAccumulator {
struct MedianAccumulator<T: ArrowNumericType> {
data_type: DataType,
arrays: Vec<ArrayRef>,
all_values: Vec<ScalarValue>,
all_values: Vec<T::Native>,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍

}

impl Accumulator for MedianAccumulator {
impl<T: ArrowNumericType> std::fmt::Debug for MedianAccumulator<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "MedianAccumulator({})", self.data_type)
}
}

impl<T: ArrowNumericType> Accumulator for MedianAccumulator<T> {
fn state(&self) -> Result<Vec<ScalarValue>> {
let all_values = to_scalar_values(&self.arrays)?;
let all_values = self
.all_values
.iter()
.map(|x| ScalarValue::new_primitive::<T>(Some(*x), &self.data_type))
.collect();
let state = ScalarValue::new_list(Some(all_values), self.data_type.clone());

Ok(vec![state])
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
assert_eq!(values.len(), 1);
let array = &values[0];

// Defer conversions to scalar values to final evaluation.
assert_eq!(array.data_type(), &self.data_type);
self.arrays.push(array.clone());

let values = values[0].as_primitive::<T>();
self.all_values.reserve(values.len() - values.null_count());
self.all_values.extend(values.iter().flatten());
Ok(())
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
assert_eq!(states.len(), 1);

let array = &states[0];
assert!(matches!(array.data_type(), DataType::List(_)));
for index in 0..array.len() {
match ScalarValue::try_from_array(array, index)? {
ScalarValue::List(Some(mut values), _) => {
self.all_values.append(&mut values);
}
ScalarValue::List(None, _) => {} // skip empty state
v => {
return internal_err!(
"unexpected state in median. Expected DataType::List, got {v:?}"
)
}
}
let array = states[0].as_list::<i32>();
for v in array.iter().flatten() {
self.update_batch(&[v])?
}
Ok(())
}

fn evaluate(&self) -> Result<ScalarValue> {
let batch_values = to_scalar_values(&self.arrays)?;

if !self
.all_values
.iter()
.chain(batch_values.iter())
.any(|v| !v.is_null())
{
return ScalarValue::try_from(&self.data_type);
}

// Create an array of all the non null values and find the
// sorted indexes
let array = ScalarValue::iter_to_array(
self.all_values
.iter()
.chain(batch_values.iter())
// ignore null values
.filter(|v| !v.is_null())
.cloned(),
)?;

// find the mid point
let len = array.len();
let mid = len / 2;

// only sort up to the top size/2 elements
let limit = Some(mid + 1);
let options = None;
let indices = sort_to_indices(&array, options, limit)?;

// pick the relevant indices in the original arrays
let result = if len >= 2 && len % 2 == 0 {
// even number of values, average the two mid points
let s1 = scalar_at_index(&array, &indices, mid - 1)?;
let s2 = scalar_at_index(&array, &indices, mid)?;
match s1.add(s2)? {
ScalarValue::Int8(Some(v)) => ScalarValue::Int8(Some(v / 2)),
ScalarValue::Int16(Some(v)) => ScalarValue::Int16(Some(v / 2)),
ScalarValue::Int32(Some(v)) => ScalarValue::Int32(Some(v / 2)),
ScalarValue::Int64(Some(v)) => ScalarValue::Int64(Some(v / 2)),
ScalarValue::UInt8(Some(v)) => ScalarValue::UInt8(Some(v / 2)),
ScalarValue::UInt16(Some(v)) => ScalarValue::UInt16(Some(v / 2)),
ScalarValue::UInt32(Some(v)) => ScalarValue::UInt32(Some(v / 2)),
ScalarValue::UInt64(Some(v)) => ScalarValue::UInt64(Some(v / 2)),
ScalarValue::Float32(Some(v)) => ScalarValue::Float32(Some(v / 2.0)),
ScalarValue::Float64(Some(v)) => ScalarValue::Float64(Some(v / 2.0)),
ScalarValue::Decimal128(Some(v), p, s) => {
ScalarValue::Decimal128(Some(v / 2), p, s)
}
v => {
return internal_err!("Unsupported type in MedianAccumulator: {v:?}")
}
}
// TODO: evaluate could pass &mut self
let mut d = self.all_values.clone();
let cmp = |x: &T::Native, y: &T::Native| x.compare(*y);

let len = d.len();
let median = if len == 0 {
None
} else if len % 2 == 0 {
let (low, high, _) = d.select_nth_unstable_by(len / 2, cmp);
let (_, low, _) = low.select_nth_unstable_by(low.len() - 1, cmp);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🎉

let median = low.add_wrapping(*high).div_wrapping(T::Native::usize_as(2));
Some(median)
} else {
// odd number of values, pick that one
scalar_at_index(&array, &indices, mid)?
let (_, median, _) = d.select_nth_unstable_by(len / 2, cmp);
Some(*median)
};

Ok(result)
Ok(ScalarValue::new_primitive::<T>(median, &self.data_type))
}

fn size(&self) -> usize {
let arrays_size: usize = self.arrays.iter().map(|a| a.len()).sum();

std::mem::size_of_val(self)
+ ScalarValue::size_of_vec(&self.all_values)
+ arrays_size
- std::mem::size_of_val(&self.all_values)
+ self.data_type.size()
- std::mem::size_of_val(&self.data_type)
}
}

fn to_scalar_values(arrays: &[ArrayRef]) -> Result<Vec<ScalarValue>> {
let num_values: usize = arrays.iter().map(|a| a.len()).sum();
let mut all_values = Vec::with_capacity(num_values);

for array in arrays {
for index in 0..array.len() {
all_values.push(ScalarValue::try_from_array(&array, index)?);
}
+ self.all_values.capacity() * std::mem::size_of::<T::Native>()
}

Ok(all_values)
}

/// Given a returns `array[indicies[indicie_index]]` as a `ScalarValue`
fn scalar_at_index(
array: &dyn Array,
indices: &UInt32Array,
indicies_index: usize,
) -> Result<ScalarValue> {
let array_index = indices
.value(indicies_index)
.try_into()
.expect("Convert uint32 to usize");
ScalarValue::try_from_array(array, array_index)
}

#[cfg(test)]
Expand All @@ -269,7 +205,6 @@ mod tests {
use crate::generic_test_op;
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};
use datafusion_common::Result;

#[test]
fn median_decimal() -> Result<()> {
Expand Down