Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add timezone support to JSON reader #3845

Merged
merged 3 commits into from
Mar 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion arrow-array/src/array/primitive_array.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1049,7 +1049,7 @@ impl<T: ArrowTimestampType> PrimitiveArray<T> {
self.data
.clone()
.into_builder()
.data_type(DataType::Timestamp(T::get_time_unit(), timezone))
.data_type(DataType::Timestamp(T::UNIT, timezone))
.build_unchecked()
};
PrimitiveArray::from(array_data)
Expand Down
26 changes: 12 additions & 14 deletions arrow-array/src/types.rs
Original file line number Diff line number Diff line change
Expand Up @@ -287,30 +287,28 @@ impl ArrowTemporalType for DurationMicrosecondType {}
impl ArrowTemporalType for DurationNanosecondType {}

/// A timestamp type allows us to create array builders that take a timestamp.
pub trait ArrowTimestampType: ArrowTemporalType {
pub trait ArrowTimestampType: ArrowTemporalType<Native = i64> {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is not a breaking change as these types are sealed, but it simplifies generic code as i64 is guaranteed

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't understand how these are sealed -- https://docs.rs/arrow/35.0.0/arrow/datatypes/trait.ArrowTimestampType.html

Maybe we should add a doc commen note here explaining that they are sealed

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh, I assumed they were, they definitely should be 😄

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

/// The [`TimeUnit`] of this timestamp.
const UNIT: TimeUnit;

/// Returns the `TimeUnit` of this timestamp.
fn get_time_unit() -> TimeUnit;
#[deprecated(note = "Use Self::UNIT")]
fn get_time_unit() -> TimeUnit {
Self::UNIT
}
}

impl ArrowTimestampType for TimestampSecondType {
fn get_time_unit() -> TimeUnit {
TimeUnit::Second
}
const UNIT: TimeUnit = TimeUnit::Second;
}
impl ArrowTimestampType for TimestampMillisecondType {
fn get_time_unit() -> TimeUnit {
TimeUnit::Millisecond
}
const UNIT: TimeUnit = TimeUnit::Millisecond;
}
impl ArrowTimestampType for TimestampMicrosecondType {
fn get_time_unit() -> TimeUnit {
TimeUnit::Microsecond
}
const UNIT: TimeUnit = TimeUnit::Microsecond;
}
impl ArrowTimestampType for TimestampNanosecondType {
fn get_time_unit() -> TimeUnit {
TimeUnit::Nanosecond
}
const UNIT: TimeUnit = TimeUnit::Nanosecond;
}

impl IntervalYearMonthType {
Expand Down
2 changes: 1 addition & 1 deletion arrow-cast/src/cast.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2630,7 +2630,7 @@ fn cast_string_to_timestamp<
.downcast_ref::<GenericStringArray<Offset>>()
.unwrap();

let scale_factor = match TimestampType::get_time_unit() {
let scale_factor = match TimestampType::UNIT {
TimeUnit::Second => 1_000_000_000,
TimeUnit::Millisecond => 1_000_000,
TimeUnit::Microsecond => 1_000,
Expand Down
73 changes: 56 additions & 17 deletions arrow-json/src/raw/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,13 @@ use crate::raw::primitive_array::PrimitiveArrayDecoder;
use crate::raw::string_array::StringArrayDecoder;
use crate::raw::struct_array::StructArrayDecoder;
use crate::raw::tape::{Tape, TapeDecoder, TapeElement};
use crate::raw::timestamp_array::TimestampArrayDecoder;
use arrow_array::timezone::Tz;
use arrow_array::types::*;
use arrow_array::{downcast_integer, make_array, RecordBatch, RecordBatchReader};
use arrow_data::ArrayData;
use arrow_schema::{ArrowError, DataType, SchemaRef, TimeUnit};
use chrono::Utc;
use std::io::BufRead;

mod boolean_array;
Expand All @@ -41,6 +44,7 @@ mod primitive_array;
mod string_array;
mod struct_array;
mod tape;
mod timestamp_array;

/// A builder for [`RawReader`] and [`RawDecoder`]
pub struct RawReaderBuilder {
Expand Down Expand Up @@ -293,10 +297,34 @@ fn make_decoder(
data_type => (primitive_decoder, data_type),
DataType::Float32 => primitive_decoder!(Float32Type, data_type),
DataType::Float64 => primitive_decoder!(Float64Type, data_type),
DataType::Timestamp(TimeUnit::Second, None) => primitive_decoder!(TimestampSecondType, data_type),
DataType::Timestamp(TimeUnit::Millisecond, None) => primitive_decoder!(TimestampMillisecondType, data_type),
DataType::Timestamp(TimeUnit::Microsecond, None) => primitive_decoder!(TimestampMicrosecondType, data_type),
DataType::Timestamp(TimeUnit::Nanosecond, None) => primitive_decoder!(TimestampNanosecondType, data_type),
DataType::Timestamp(TimeUnit::Second, None) => {
Ok(Box::new(TimestampArrayDecoder::<TimestampSecondType, _>::new(data_type, Utc)))
},
DataType::Timestamp(TimeUnit::Millisecond, None) => {
Ok(Box::new(TimestampArrayDecoder::<TimestampMillisecondType, _>::new(data_type, Utc)))
},
DataType::Timestamp(TimeUnit::Microsecond, None) => {
Ok(Box::new(TimestampArrayDecoder::<TimestampMicrosecondType, _>::new(data_type, Utc)))
},
DataType::Timestamp(TimeUnit::Nanosecond, None) => {
Ok(Box::new(TimestampArrayDecoder::<TimestampNanosecondType, _>::new(data_type, Utc)))
},
DataType::Timestamp(TimeUnit::Second, Some(ref tz)) => {
let tz: Tz = tz.parse()?;
Ok(Box::new(TimestampArrayDecoder::<TimestampSecondType, _>::new(data_type, tz)))
},
DataType::Timestamp(TimeUnit::Millisecond, Some(ref tz)) => {
let tz: Tz = tz.parse()?;
Ok(Box::new(TimestampArrayDecoder::<TimestampMillisecondType, _>::new(data_type, tz)))
},
DataType::Timestamp(TimeUnit::Microsecond, Some(ref tz)) => {
let tz: Tz = tz.parse()?;
Ok(Box::new(TimestampArrayDecoder::<TimestampMicrosecondType, _>::new(data_type, tz)))
},
DataType::Timestamp(TimeUnit::Nanosecond, Some(ref tz)) => {
let tz: Tz = tz.parse()?;
Ok(Box::new(TimestampArrayDecoder::<TimestampNanosecondType, _>::new(data_type, tz)))
},
DataType::Date32 => primitive_decoder!(Date32Type, data_type),
DataType::Date64 => primitive_decoder!(Date64Type, data_type),
DataType::Time32(TimeUnit::Second) => primitive_decoder!(Time32SecondType, data_type),
Expand Down Expand Up @@ -809,29 +837,27 @@ mod tests {

fn test_timestamp<T: ArrowTimestampType>() {
let buf = r#"
{"a": 1, "b": "2020-09-08T13:42:29.190855+00:00", "c": 38.30}
{"a": 2, "b": "2020-09-08T13:42:29.190855Z", "c": 123.456}
{"a": 1, "b": "2020-09-08T13:42:29.190855+00:00", "c": 38.30, "d": "1997-01-31T09:26:56.123"}
{"a": 2, "b": "2020-09-08T13:42:29.190855Z", "c": 123.456, "d": 123.456}

{"b": 1337, "b": "2020-09-08T13:42:29Z", "c": "1997-01-31T09:26:56.123"}
{"b": 40, "c": "2020-09-08T13:42:29.190855+00:00"}
{"b": 1234, "a": null, "c": "1997-01-31 09:26:56.123Z"}
{"c": "1997-01-31T14:26:56.123-05:00"}
{"b": 1337, "b": "2020-09-08T13:42:29Z", "c": "1997-01-31T09:26:56.123", "d": "1997-01-31T09:26:56.123Z"}
{"b": 40, "c": "2020-09-08T13:42:29.190855+00:00", "d": "1997-01-31 09:26:56.123-05:00"}
{"b": 1234, "a": null, "c": "1997-01-31 09:26:56.123Z", "d": "1997-01-31 092656"}
{"c": "1997-01-31T14:26:56.123-05:00", "d": "1997-01-31"}
"#;

let with_timezone = DataType::Timestamp(T::UNIT, Some("+08:00".to_string()));
let schema = Arc::new(Schema::new(vec![
Field::new("a", T::DATA_TYPE, true),
Field::new("b", T::DATA_TYPE, true),
Field::new("c", T::DATA_TYPE, true),
Field::new("d", with_timezone, true),
]));

let batches = do_read(buf, 1024, true, schema);
assert_eq!(batches.len(), 1);

let unit = match T::DATA_TYPE {
DataType::Timestamp(unit, _) => unit,
_ => unreachable!(),
};
let unit_in_nanos = match unit {
let unit_in_nanos: i64 = match T::UNIT {
TimeUnit::Second => 1_000_000_000,
TimeUnit::Millisecond => 1_000_000,
TimeUnit::Microsecond => 1_000,
Expand Down Expand Up @@ -859,7 +885,6 @@ mod tests {
1234,
0
]
.map(T::Native::usize_as)
);

let col3 = as_primitive_array::<T>(batches[0].column(2));
Expand All @@ -874,7 +899,21 @@ mod tests {
854702816123000000 / unit_in_nanos,
854738816123000000 / unit_in_nanos
]
.map(T::Native::usize_as)
);

let col4 = as_primitive_array::<T>(batches[0].column(3));

assert_eq!(col4.null_count(), 0);
assert_eq!(
col4.values(),
&[
854674016123000000 / unit_in_nanos,
123,
854702816123000000 / unit_in_nanos,
854720816123000000 / unit_in_nanos,
854674016000000000 / unit_in_nanos,
854640000000000000 / unit_in_nanos
]
);
}

Expand Down
99 changes: 99 additions & 0 deletions arrow-json/src/raw/timestamp_array.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use chrono::TimeZone;
use num::NumCast;
use std::marker::PhantomData;

use arrow_array::builder::PrimitiveBuilder;
use arrow_array::types::ArrowTimestampType;
use arrow_array::Array;
use arrow_cast::parse::string_to_datetime;
use arrow_data::ArrayData;
use arrow_schema::{ArrowError, DataType, TimeUnit};

use crate::raw::tape::{Tape, TapeElement};
use crate::raw::{tape_error, ArrayDecoder};

/// A specialized [`ArrayDecoder`] for timestamps
pub struct TimestampArrayDecoder<P: ArrowTimestampType, Tz: TimeZone> {
data_type: DataType,
timezone: Tz,
// Invariant and Send
phantom: PhantomData<fn(P) -> P>,
}

impl<P: ArrowTimestampType, Tz: TimeZone> TimestampArrayDecoder<P, Tz> {
pub fn new(data_type: DataType, timezone: Tz) -> Self {
Self {
data_type,
timezone,
phantom: Default::default(),
}
}
}

impl<P, Tz> ArrayDecoder for TimestampArrayDecoder<P, Tz>
where
P: ArrowTimestampType,
Tz: TimeZone + Send,
{
fn decode(&mut self, tape: &Tape<'_>, pos: &[u32]) -> Result<ArrayData, ArrowError> {
let mut builder = PrimitiveBuilder::<P>::with_capacity(pos.len())
.with_data_type(self.data_type.clone());

for p in pos {
match tape.get(*p) {
TapeElement::Null => builder.append_null(),
TapeElement::String(idx) => {
let s = tape.get_string(idx);
let date = string_to_datetime(&self.timezone, s).map_err(|e| {
ArrowError::JsonError(format!(
"failed to parse \"{s}\" as {}: {}",
self.data_type, e
))
})?;

let value = match P::UNIT {
TimeUnit::Second => date.timestamp(),
TimeUnit::Millisecond => date.timestamp_millis(),
TimeUnit::Microsecond => date.timestamp_micros(),
TimeUnit::Nanosecond => date.timestamp_nanos(),
};
builder.append_value(value)
}
TapeElement::Number(idx) => {
let s = tape.get_string(idx);
let value = lexical_core::parse::<f64>(s.as_bytes())
.ok()
.and_then(NumCast::from)
.ok_or_else(|| {
ArrowError::JsonError(format!(
"failed to parse {s} as {}",
self.data_type
))
})?;

builder.append_value(value)
}
d => return Err(tape_error(d, "primitive")),
}
}

Ok(builder.finish().into_data())
}
}