-
Notifications
You must be signed in to change notification settings - Fork 2
Image Generation
Thanos Masouris edited this page Aug 28, 2022
·
1 revision
To generate synthetic images using the pre-trained DiStyleGAN model, follow the steps below:
- Clone the GitHub repository.
- Install the python packages in the requirements file. (Python 3.10)
- Download the checkpoint for our pre-trained model and extract the zip file in the root directory of our repository.
- Generate synthetic samples using one of the following options:
- Example in Python
from distylegan import DiStyleGAN
model = DiStyleGAN()
images= model.generate(
checkpoint_path="../checkpoint",
nsamples=100,
label=[0, 3, 7] # or label=x (int in range [0,9]), label=None
save="synthetic-samples",
batch_size=32
)
- Using the command line options for the corresponding python script
$ python distylegan.py generate -h
usage: distylegan.py generate [-h] --checkpoint_path CHECKPOINT_PATH --nsamples NSAMPLES --save SAVE
[--label [{0,1,2,3,4,5,6,7,8,9} ...]] [--batch_size BATCH_SIZE]
options:
-h, --help show this help message and exit
Required arguments for the generation procedure:
--checkpoint_path CHECKPOINT_PATH
Path to previous checkpoint (the directory
must contain the generator.pt and
config.json files)
--nsamples NSAMPLES Number of samples to generate per label
--save SAVE Path to save the generated images to
Optional arguments about the generation procedure:
--label [{0,1,2,3,4,5,6,7,8,9} ...]
Class label(s) for the samples (Default:
None, random labels) --> e.g. --label 0 3 7
--batch_size BATCH_SIZE
Number of samples per batch (Default: 32)
- Using the flask webapp by running the command
flask run
inside the webapp/ directory of our repository. Then following the link displayed in the command line (e.g. http://127.0.0.1:5000/), you will be presented with the following interface where you can generate images.
The interface of our webapp for image generation.