-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdistylegan.py
797 lines (694 loc) · 32.7 KB
/
distylegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
"""This module implements the DiStyleGAN model, which constitutes a
distillation attempt for the official PyTorch implementation of the
StyleGAN2-ADA model by NVIDIA Research Projects on Github
(https://github.com/NVlabs/stylegan2-ada-pytorch), for the task of
conditional image generation on CIFAR-10.
"""
import argparse
import json
import random
from datetime import datetime
from pathlib import Path
from typing import Callable, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from model.loss import DLoss, GLoss
from model.network import Discriminator, Generator
from model.utils import *
class DiStyleGAN(object):
"""DiStyleGAN class for the conditional image generation.
Args:
- c_dim (int, optional) : condition dimension (Default: 10)
- z_dim (int, optional) : noise dimension (Default: 512)
- ngf (int, optional) : number of generator filters in the first
convolutional layer (Default: 256)
- ndf (int, optional) : number of discriminator filters in the first
convolutional layer (Default: 128)
- lambda_pixel (float, optional) : weight for the pixel loss of the
Generator (Default: 0.2)
- lambda_ganG (float, optional) : weight for the adversarial
distillation loss of the Generator
(Default: 0.01)
- lambda_ganD (float, optional) : weight for the adversarial GAN loss
of the Discriminator (Default: 0.2)
- project_dim (int, optional) : dimension to project the input
condition (Default: 128)
- nc (int, optional): number of channels for the images (Default: 3)
- transform (callable, optional) : optional transform to be applied
on a sample image
(Default: None)
- num_test (int, optional): number of generated images for evaluation
(Default: 30)
- device (str, optional): device to use for training ('cpu' or 'cuda')
(Default: If there is a CUDA device
available, it will be used for training)
"""
def __init__(
self,
c_dim: int = 10,
z_dim: int = 512,
ngf: int = 256,
ndf: int = 128,
lambda_pixel: float = 0.2,
lambda_ganG: float = 1e-2,
lambda_ganD: float = 0.2,
project_dim: int = 128,
nc: int = 3,
transform: Callable = None,
num_test: int = 30,
device: str = None,
**kwargs
) -> None:
""" Initialize the DiStyleGAN model.
Args:
- c_dim (int, optional) : condition dimension (Default: 10)
- z_dim (int, optional) : noise dimension (Default: 512)
- ngf (int, optional) : number of generator filters in the first
convolutional layer (Default: 256)
- ndf (int, optional) : number of discriminator filters in the first
convolutional layer (Default: 128)
- lambda_pixel (float, optional) : weight for the pixel loss of the
Generator (Default: 0.2)
- lambda_ganG (float, optional) : weight for the adversarial
distillation loss of the Generator
(Default: 0.01)
- lambda_ganD (float, optional) : weight for the adversarial GAN loss
of the Discriminator (Default: 0.2)
- project_dim (int, optional) : dimension to project the input
condition (Default: 128)
- nc (int, optional): number of channels for the images (Default: 3)
- transform (callable, optional) : optional transform to be applied
on a sample image (Default: None)
- num_test (int, optional): number of generated images for evaluation
(Default: 30)
- device (str, optional): device to use for training ('cpu' or 'cuda')
(Default: If there is a CUDA device
available, it will be used for training)
"""
self.num_test = num_test
if not device:
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
)
else:
self.device = torch.device(device)
if transform is None:
self.transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
else:
self.transform = transform
# Create configuration dictionary
self.config = {
"c_dim": c_dim,
"z_dim": z_dim,
"ngf": ngf,
"ndf": ndf,
"lambda_pixel": lambda_pixel,
"lambda_ganG": lambda_ganG,
"lambda_ganD": lambda_ganD,
"project_dim": project_dim,
"nc": nc
}
def __init_weights(self, m) -> None:
"""Initialize the weights.
This method is applied to each layer of the Generator's and
Discriminator's layers to initiliaze their weights and biases.
"""
classname = m.__class__.__name__
if isinstance(m, nn.Conv2d) or classname.find('Conv') != -1:
nn.init.orthogonal_(m.weight.data, 1.0)
if m.bias is not None:
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('Linear') != -1:
nn.init.orthogonal_(m.weight.data, 1.0)
if m.bias is not None:
m.bias.data.fill_(0.0)
def load_networks(
self, checkpoint: str = None) -> "Tuple[Generator, Discriminator]":
"""Load the generator and discriminator networks.
Args:
- checkpoint (str, optional) : path to checkpoint's files
(Default: None)
"""
netG = Generator(
self.config["ngf"], self.config["z_dim"], self.config["c_dim"],
self.config["project_dim"], self.config["nc"])
netD = Discriminator(
self.config["ndf"],
self.config["c_dim"],
self.config["project_dim"],
self.config["nc"])
if checkpoint:
try:
gen_path = Path(checkpoint, 'generator.pt')
netG.load_state_dict(torch.load(
gen_path, map_location=self.device))
dis_path = Path(checkpoint, 'discriminator.pt')
netD.load_state_dict(torch.load(
dis_path, map_location=self.device))
except FileNotFoundError:
print("[ERROR] Wrong checkpoint path or files don\'t exist.")
exit(1)
else:
netG.apply(self.__init_weights)
netD.apply(self.__init_weights)
netG = netG.to(self.device)
netD = netD.to(self.device)
return netG, netD
def __set_test(self, checkpoint=None) -> None:
"""Initialize the test set for evaluation.
This method generates random noise test vectors and corresponding
random-class test labels. In order to evaluate the performance of the
model, this test set must be fixed since the beginning of the training.
In case the training is resumed, the aforementioned vectors are loaded
from the given `checkpoint` path.
Args:
- checkpoint (str, optional) : path to checkpoint's files
(Default: None)
"""
if checkpoint:
test_labels_path = Path(checkpoint, 'labels.pt')
test_z_path = Path(checkpoint, 'noise.pt')
try:
self.test_labels = torch.load(
test_labels_path, map_location=self.device)
self.test_z = torch.load(test_z_path, map_location=self.device)
except FileNotFoundError:
print("[ERROR] Wrong checkpoint path or files don\'t exist.")
exit(1)
return
self.test_z = torch.randn(
self.num_test, self.config["z_dim"]).to(
self.device)
self.test_labels = torch.zeros(self.num_test, 10).to(self.device)
for i in range(self.num_test):
self.test_labels[i][random.randint(0, 9)] = 1
torch.save(self.test_z, Path(self.save, "noise.pt"))
torch.save(self.test_labels, Path(self.save, "labels.pt"))
def __define_optimizers(
self, G_lr: float, D_lr: float,
adam_momentum: float = 0.5,
checkpoint=None
) -> "Tuple[torch.optim.Adam, torch.optim.Adam]":
"""Define the optimizers.
This method initializes the Adam optimizers for both the Generator
and the Discriminator.
Args:
- G_lr (float) : learning rate for the Generator
- D_lr (float) : learning rate for the Discriminator
- adam_momentum (float, optional) : Adam momentum (Defualt: 0.5)
- checkpoint (str, optional) : path to checkpoint's files
(Default: None)
"""
optimizerD = torch.optim.Adam(self.netD.parameters(),
lr=D_lr,
betas=(adam_momentum, 0.999))
optimizerG = torch.optim.Adam(self.netG.parameters(),
lr=G_lr,
betas=(adam_momentum, 0.999))
if checkpoint:
optG_path = Path(checkpoint, 'optimizerG.pt')
optD_path = Path(checkpoint, 'optimizerD.pt')
try:
optimizerG.load_state_dict(torch.load(
optG_path, map_location=self.device))
optimizerD.load_state_dict(torch.load(
optD_path, map_location=self.device))
except FileNotFoundError:
print("[ERROR] Wrong checkpoint path or files don\'t exist.")
exit(1)
return optimizerG, optimizerD
def __evaluate(self, path: str, epoch: int) -> None:
"""Generate images for the `num_test` test samples selected.
This method is called at the end of each training epoch in order to
evaluate the performance of the model during training, by generating
and saving images based on the test set's noise and labels.
Args:
- path (str) : path to save the images
- epoch (int) : the current epoch of training
"""
self.netG.eval()
with torch.no_grad():
images = self.netG(self.test_z, self.test_labels)
dirname = f"epoch-{epoch}"
save_images(images, path, dirname)
def update_D(
self, z: torch.Tensor, teacher_image: torch.Tensor,
label: torch.Tensor, real_image: torch.Tensor,
real_label: torch.Tensor) -> "tuple[dict, list]":
"""Update the Discriminator network's parameters.
This method is called at each training iteration to update the
Discriminator network's parameters. It returns a log of the losses,
and a list of features extracted by the discriminator for the
`teacher_image`.
Args:
- z (torch.Tensor) : noise tensor from the FakeCIFAR10 dataset
- teacher_image (torch.Tensor) : the fake image generated by the
teacher network that corresponds
to the input noise tensor `z`
- label (torch.Tensor) : the label that corresponds to the input
image `teacher_image`
- real_image (torch.Tensor) : a sample image from the official
CIFAR10 dataset
- real_label (torch.Tensor) : the label that corresponds to the
input `real_image`
"""
for param in self.netD.parameters():
param.requires_grad = True
# Knowledge Distillation - Teacher
dis_teacher, features_teacher = self.netD(teacher_image, label)
features_teacher = [h.detach() for h in features_teacher]
# Knowledge Distillation - Student
student_image = self.netG(z, label).detach()
dis_student, _ = self.netD(student_image, label)
# Adversarial Loss - Real
dis_real, _ = self.netD(real_image, real_label)
# Adversarial Loss - Random
noise = torch.randn(
self.batch_size, self.config["z_dim"]).to(
self.device)
random_image = self.netG(noise, real_label).detach()
dis_random, _ = self.netD(random_image, real_label)
lossD, logD = self.criterionD(dis_student, dis_teacher,
dis_random, dis_real)
self.optimizerD.zero_grad()
lossD.backward()
self.optimizerD.step()
return logD, features_teacher
def update_G(self, z: torch.Tensor, teacher_image: torch.Tensor,
features_teacher: "list[torch.Tensor]", label: torch.Tensor,
real_label: torch.Tensor, adversarial: bool) -> dict:
"""Update the Generator network's parameters.
This method is called at each training iteration to update the
Generator network's parameters. It returns a log of the losses.
Args:
- z (torch.Tensor) : noise tensor from the FakeCIFAR10 dataset
- teacher_image (torch.Tensor) : the fake image generated by the
teacher network that corresponds
to the input noise tensor `z`
- features_teacher (list[torch.Tensor]): a list of features
extracted by the discriminator for the `teacher_image`
- label (torch.Tensor) : the label that corresponds to the input
image `teacher_image`
- real_label (torch.Tensor) : the labels used in the current
batch of real images
- adversarial (bool) : defines whether or not to use the
adversarial losses in the current update
"""
self.netG.train()
for param in self.netD.parameters():
param.requires_grad = False
student_image = self.netG(z, label)
dis_student, features_student = self.netD(student_image, label)
if adversarial:
noise = torch.randn(
self.batch_size, self.config["z_dim"]).to(
self.device)
random_image = self.netG(noise, real_label)
dis_random, _ = self.netD(random_image, real_label)
lossG, logG = self.criterionG(
student_image,
teacher_image,
features_student,
features_teacher,
dis_student,
dis_random
)
else:
lossG, logG = self.criterionG(
student_image,
teacher_image,
features_student,
features_teacher
)
self.optimizerG.zero_grad()
lossG.backward()
self.optimizerG.step()
return logG
def train(
self,
dataset: str,
save: str,
real_dataset: str = None,
epochs: int = 150,
batch_size: int = 128,
gstep: int = 10,
lr_G: float = 0.0002,
lr_D: float = 0.0002,
adam_momentum: float = 0.5,
lr_decay: int = 350000,
checkpoint_interval: int = 20,
checkpoint_path: str = None,
num_workers: int = 0,
**kwargs
):
"""Train DiStyleGAN.
Args:
- dataset (str) : path to the dataset directory of the fake CIFAR10
data generated by the teacher network
- save (str) : path to save checkpoints and results
- real_dataset (str, optional) : path to the dataset directory of
the real CIFAR10 data.
(Default: None, it will be
downloaded and saved in the parent
directory of input `dataset` path)
- epochs (int, optional) : number of training epochs
(Default: 150)
- batch_size (int, optional) : number of samples per batch
(Default: 128)
- gstep (int, optional) : the number of discriminator updates
after which the generator is updated
using the full loss (Default: 10)
- lr_G (float, optional) : learning rate for the generator's
Adam optimizers (Default: 0.0002)
- lr_D (float, optional) : learning rate for the discriminator's
Adam optimizers (Default: 0.0002)
- adam_momentum (float, optional) : momentum value for the
Adam optimizers' betas
(Default: 0.5)
- lr_decay (int, optional) : iteration to start decaying the
learning rates for the Generator and
the Discriminator (Default: 350000)
- checkpoint_interval (int, optional) : checkpoints will be saved
every `checkpoint_interval`
epochs (Default: 20)
- checkpoint_path (str, optional) : path to previous checkpoint
- num_workers (int, optional) : number of subprocesses to use
for data loading (Default: 0,
whichs means that the data will be
loaded in the main process.)
"""
date = datetime.now().strftime("%d-%b-%Y (%H.%M)")
self.save = Path(save, date)
self.save.mkdir(exist_ok=True, parents=True)
self.batch_size = batch_size
if checkpoint_path is not None:
with open(Path(checkpoint_path, "config.json"), "r") as f:
self.config = json.load(f)
# Save network's configuration
with open(Path(self.save, "config.json"), "w") as f:
json.dump(self.config, f)
# Tensorboard
writer = SummaryWriter(Path(self.save, "tensorboard"))
# Load the networks
self.netG, self.netD = self.load_networks(checkpoint_path)
# Get dataloaders
fakeCIFAR_loader, cifar10_loader = get_dataloaders(
dataset, self.transform, self.batch_size,
real_dataset, num_workers)
# Set test dataset
self.__set_test(checkpoint_path)
# Optimizers
self.optimizerG, self.optimizerD = self.__define_optimizers(
lr_G, lr_D, adam_momentum, checkpoint_path)
# Define criteria
self.criterionG = GLoss(
self.config["lambda_pixel"],
self.config["lambda_ganG"])
self.criterionD = DLoss(self.config["lambda_ganD"])
training_start = datetime.now()
print(
f"\n{training_start.strftime('%d %B [%H:%M:%S] ')}"
"Starting training..."
)
if checkpoint_path:
with open(Path(checkpoint_path, "log.json"), "r") as f:
log = json.load(f)
# Resume training from the previous epoch
starting_epoch = log["epoch"] + 1
else:
starting_epoch = 1
total_iterations = len(fakeCIFAR_loader) * epochs
for epoch in range(starting_epoch, epochs+1):
real_iter = iter(cifar10_loader)
for i, (z, teacher_image, label) in enumerate(fakeCIFAR_loader):
# Decay the learning rates
if (epoch-1)*len(fakeCIFAR_loader) + i >= lr_decay:
decay_lr(self.optimizerG, total_iterations, lr_decay, lr_G)
decay_lr(self.optimizerD, total_iterations, lr_decay, lr_D)
z = z.to(self.device)
teacher_image = teacher_image.to(self.device)
label = label.to(self.device)
# Get real data
try:
real_image, real_label = next(real_iter)
except:
real_iter = iter(cifar10_loader)
real_image, real_label = next(real_iter)
# Convert CIFAR-10 labels to one-hot encoding
real_label = F.one_hot(
real_label, num_classes=10).float()
real_image = real_image.to(self.device)
real_label = real_label.to(self.device)
# Update Discriminator
logD, features_teacher = self.update_D(
z, teacher_image, label, real_image, real_label)
# Update Generator
adversarial = (i+1) % gstep == 0
logG = self.update_G(
z, teacher_image, features_teacher, label, real_label,
adversarial)
# Print training information
print(
f"Epoch: [{epoch}/{epochs}] \t"
f"Batch [{i + 1}/{len(fakeCIFAR_loader)}] \t Generator "
f"Loss: {logG['G/Total Loss']:.5f} \t Discriminator "
f"Loss: {logD['D/Total Loss']:5f}", end="\r"
)
# Tensorboard logging
for key, value in logG.items():
writer.add_scalar(key, value, epoch)
for key, value in logD.items():
writer.add_scalar(key, value, epoch)
self.__evaluate(self.save, epoch)
if (epoch % checkpoint_interval == 0 or epoch == epochs):
save_checkpoints(
self.netG, self.netD,
self.optimizerG, self.optimizerD,
epoch, self.save, logG, logD)
training_end = datetime.now()
print(
f"\n{training_end.strftime('%d-%b [%H:%M:%S] ')}"
"Finished training."
)
duration = (training_end - training_start)
print(
"Training duration: "
f"{duration.days} days, {duration.seconds // 3600} hours"
f" and {(duration.seconds // 60) % 60} minutes"
)
def generate(
self,
checkpoint_path: str,
nsamples: int,
label: "int | list[int]" = None,
save: str = None,
batch_size: int = 32,
**kwargs
) -> torch.Tensor:
"""Generate images using a pre-trained model's checkpoint.
Args:
- checkpoint_path (str) : path to previous checkpoint (the
directory must contain the generator.pt and config.json files)
- nsamples (int) : number of samples to generate
- label (int, list[int], optional) : class label for the samples
(Default: None, random labels)
- save (str, optional) : path to save the generated images
(Default: None)
- batch_size (int, optional) : number of samples per batch
(Default: 32)
"""
with open(Path(checkpoint_path, "config.json"), "r") as f:
self.config = json.load(f)
# Load the generator
netG = Generator(
self.config["ngf"], self.config["z_dim"], self.config["c_dim"],
self.config["project_dim"], self.config["nc"])
gen_path = Path(checkpoint_path, 'generator.pt')
netG.load_state_dict(torch.load(
gen_path, map_location=self.device))
netG = netG.to(self.device)
netG.eval()
if isinstance(label, int):
label = [label]
elif label is None:
label = ["random"]
if nsamples < batch_size:
batch_size = nsamples
all_images = []
for l in label:
print(f"Generating images for label {l}...")
images = torch.Tensor()
labels = torch.zeros(batch_size, 10).to(self.device)
if l == "random":
for k in range(batch_size):
labels[k][random.randint(0, 9)] = 1
else:
labels[:, l] = 1
for i in range(nsamples // batch_size + 1):
# Last batch
if i == (nsamples // batch_size):
last_size = nsamples % batch_size
labels = torch.zeros(last_size, 10).to(self.device)
if l == "random":
for k in range(last_size):
labels[k][random.randint(0, 9)] = 1
else:
labels[:, l] = 1
noise = torch.randn(last_size, self.config["z_dim"]).to(
self.device)
else:
noise = torch.randn(batch_size, self.config["z_dim"]).to(
self.device)
with torch.no_grad():
images = torch.cat(
[images, netG(noise, labels)],
dim=0)
all_images.append(images)
if save is not None:
save_images(images, save, f"class-{l}")
all_images = torch.stack(all_images)
return all_images
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""Train DiStyleGAN or generate images
using a pretrained model.""")
subparsers = parser.add_subparsers(help="commands", dest="command")
# Create the parser for the "train" command
parser_train = subparsers.add_parser('train', help="""Train DiStyleGAN from
scratch, or use a checkpoint""")
train_required = parser_train.add_argument_group(
'Required arguments for the training procedure')
train_optional_network = parser_train.add_argument_group(
'Optional arguments about the network configuration')
train_optional = parser_train.add_argument_group(
'Optional arguments about the training procedure')
train_required.add_argument(
'--dataset', type=str, required=True,
help="""Path to the dataset directory of the fake CIFAR10 data
generated by the teacher network""")
train_required.add_argument(
'--save', type=str, required=True,
help="""Path to save checkpoints and results""")
train_optional_network.add_argument(
'--c_dim', type=int, default=10,
help='Condition dimension (Default: 10)')
train_optional_network.add_argument(
'--lambda_ganD', type=float, default=0.2,
help="""Weight for the adversarial GAN loss of the Discriminator
(Default: 0.2)""")
train_optional_network.add_argument(
'--lambda_ganG', type=float, default=0.01,
help="""Weight for the adversarial distillation loss of the Generator
(Default: 0.01)""")
train_optional_network.add_argument(
'--lambda_pixel', type=float, default=0.2,
help='Weight for the pixel loss of the Generator (Default: 0.2)')
train_optional_network.add_argument(
'--nc', type=int, default=3,
help="""Number of channels for the images (Default: 3)""")
train_optional_network.add_argument(
'--ndf', type=int, default=128,
help="""Number of discriminator filters in the first convolutional
layer (Default: 128)""")
train_optional_network.add_argument(
'--ngf', type=int, default=256,
help="""Number of generator filters in the first convolutional layer
(Default: 256)""")
train_optional_network.add_argument(
'--project_dim', type=int, default=128,
help="""Dimension to project the input condition (Default: 128)""")
train_optional_network.add_argument(
'--transform', type=callable, default=None,
help="""Optional transform to be applied on a sample image
(Default: None)""")
train_optional_network.add_argument(
'--z_dim', type=int, default=512,
help='Noise dimension (Default: 512)')
train_optional.add_argument(
'--adam_momentum', type=float, default=0.5,
help="""Momentum value for the Adam optimizers' betas
(Default: 0.5)""")
train_optional.add_argument(
'--batch_size', type=int, default=128,
help="""Number of samples per batch (Default: 128)""")
train_optional.add_argument(
'--checkpoint_interval', type=int, default=20,
help="""Checkpoints will be saved every `checkpoint_interval` epochs
(Default: 20)""")
train_optional.add_argument('--checkpoint_path', type=str, default=None,
help="""Path to previous checkpoint""")
train_optional.add_argument(
'--device', type=str, default=None,
help="""Device to use for training ('cpu' or 'cuda') (Default: If there
is a CUDA device available, it will be used for training)""")
train_optional.add_argument(
'--epochs', type=int, default=150,
help="""Number of training epochs (Default: 150)""")
train_optional.add_argument(
'--gstep', type=int, default=10,
help="""The number of discriminator updates after which the generator
is updated using the full loss (Default: 10)""")
train_optional.add_argument(
'--lr_D', type=float, default=0.0002,
help="""Learning rate for the discriminator's Adam optimizer
(Default: 0.0002)""")
train_optional.add_argument(
'--lr_G', type=float, default=0.0002,
help="""Learning rate for the generator's Adam optimizer
(Default: 0.0002)""")
train_optional.add_argument(
'--lr_decay', type=int, default=350000,
help="""Iteration to start decaying the learning rates for the
Generator and the Discriminator (Default: 350000) """)
train_optional.add_argument(
'--num_test', type=int, default=30,
help="""Number of generated images for evaluation (Default: 30)""")
train_optional.add_argument(
'--num_workers', type=int, default=0,
help="""number of subprocesses to use for data loading (Default: 0,
whichs means that the data will be loaded in the main process.)""")
train_optional.add_argument(
'--real_dataset', type=str, default=None,
help="""Path to the dataset directory of the real CIFAR10 data.
(Default: None, it will be downloaded and saved in the parent
directory of input `dataset` path)""")
# Create the parser for the "generate" command
parser_generate = subparsers.add_parser(
'generate', help="""Generate images using a
pretrained DiStyleGAN model""")
generate_required = parser_generate.add_argument_group(
'Required arguments for the generation procedure')
generate_optional = parser_generate.add_argument_group(
'Optional arguments about the generation procedure')
generate_required.add_argument(
'--checkpoint_path', type=str, required=True,
help="""Path to previous checkpoint (the directory must contain the
generator.pt and config.json files)""")
generate_required.add_argument(
'--nsamples', type=int, required=True,
help="""Number of samples to generate per label""")
generate_required.add_argument(
'--save', type=str, required=True,
help="""Path to save the generated images to""")
generate_optional.add_argument(
'--label', nargs="*", default=None, type=int, choices=range(0, 10),
help="""Class label(s) for the samples
(Default: None, random labels) --> e.g. --label 0 3 7""")
generate_optional.add_argument(
'--batch_size', type=int, default=32,
help="""Number of samples per batch (Default: 32)""")
# Parse arguments
args = vars(parser.parse_args())
model = DiStyleGAN(**args)
if args["command"] == "train":
model.train(**args)
else:
_ = model.generate(**args)