Skip to content

Commit

Permalink
[MLLIB] [SPARK-2222] Add multiclass evaluation metrics
Browse files Browse the repository at this point in the history
Adding two classes:
1) MulticlassMetrics implements various multiclass evaluation metrics
2) MulticlassMetricsSuite implements unit tests for MulticlassMetrics

Author: Alexander Ulanov <[email protected]>
Author: unknown <[email protected]>
Author: Xiangrui Meng <[email protected]>

Closes apache#1155 from avulanov/master and squashes the following commits:

2eae80f [Alexander Ulanov] Merge pull request #1 from mengxr/avulanov-master
5ebeb08 [Xiangrui Meng] minor updates
79c3555 [Alexander Ulanov] Addressing reviewers comments mengxr
0fa9511 [Alexander Ulanov] Addressing reviewers comments mengxr
f0dadc9 [Alexander Ulanov] Addressing reviewers comments mengxr
4811378 [Alexander Ulanov] Removing println
87fb11f [Alexander Ulanov] Addressing reviewers comments mengxr. Added confusion matrix
e3db569 [Alexander Ulanov] Addressing reviewers comments mengxr. Added true positive rate and false positive rate. Test suite code style.
a7e8bf0 [Alexander Ulanov] Addressing reviewers comments mengxr
c3a77ad [Alexander Ulanov] Addressing reviewers comments mengxr
e2c91c3 [Alexander Ulanov] Fixes to mutliclass metics
d5ce981 [unknown] Comments about Double
a5c8ba4 [unknown] Unit tests. Class rename
fcee82d [unknown] Unit tests. Class rename
d535d62 [unknown] Multiclass evaluation
  • Loading branch information
avulanov authored and mengxr committed Jul 15, 2014
1 parent 6555618 commit 04b01bb
Show file tree
Hide file tree
Showing 2 changed files with 280 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.evaluation

import scala.collection.Map

import org.apache.spark.SparkContext._
import org.apache.spark.annotation.Experimental
import org.apache.spark.mllib.linalg.{Matrices, Matrix}
import org.apache.spark.rdd.RDD

/**
* ::Experimental::
* Evaluator for multiclass classification.
*
* @param predictionAndLabels an RDD of (prediction, label) pairs.
*/
@Experimental
class MulticlassMetrics(predictionAndLabels: RDD[(Double, Double)]) {

private lazy val labelCountByClass: Map[Double, Long] = predictionAndLabels.values.countByValue()
private lazy val labelCount: Long = labelCountByClass.values.sum
private lazy val tpByClass: Map[Double, Int] = predictionAndLabels
.map { case (prediction, label) =>
(label, if (label == prediction) 1 else 0)
}.reduceByKey(_ + _)
.collectAsMap()
private lazy val fpByClass: Map[Double, Int] = predictionAndLabels
.map { case (prediction, label) =>
(prediction, if (prediction != label) 1 else 0)
}.reduceByKey(_ + _)
.collectAsMap()
private lazy val confusions = predictionAndLabels
.map { case (prediction, label) =>
((label, prediction), 1)
}.reduceByKey(_ + _)
.collectAsMap()

/**
* Returns confusion matrix:
* predicted classes are in columns,
* they are ordered by class label ascending,
* as in "labels"
*/
def confusionMatrix: Matrix = {
val n = labels.size
val values = Array.ofDim[Double](n * n)
var i = 0
while (i < n) {
var j = 0
while (j < n) {
values(i + j * n) = confusions.getOrElse((labels(i), labels(j)), 0).toDouble
j += 1
}
i += 1
}
Matrices.dense(n, n, values)
}

/**
* Returns true positive rate for a given label (category)
* @param label the label.
*/
def truePositiveRate(label: Double): Double = recall(label)

/**
* Returns false positive rate for a given label (category)
* @param label the label.
*/
def falsePositiveRate(label: Double): Double = {
val fp = fpByClass.getOrElse(label, 0)
fp.toDouble / (labelCount - labelCountByClass(label))
}

/**
* Returns precision for a given label (category)
* @param label the label.
*/
def precision(label: Double): Double = {
val tp = tpByClass(label)
val fp = fpByClass.getOrElse(label, 0)
if (tp + fp == 0) 0 else tp.toDouble / (tp + fp)
}

/**
* Returns recall for a given label (category)
* @param label the label.
*/
def recall(label: Double): Double = tpByClass(label).toDouble / labelCountByClass(label)

/**
* Returns f-measure for a given label (category)
* @param label the label.
* @param beta the beta parameter.
*/
def fMeasure(label: Double, beta: Double): Double = {
val p = precision(label)
val r = recall(label)
val betaSqrd = beta * beta
if (p + r == 0) 0 else (1 + betaSqrd) * p * r / (betaSqrd * p + r)
}

/**
* Returns f1-measure for a given label (category)
* @param label the label.
*/
def fMeasure(label: Double): Double = fMeasure(label, 1.0)

/**
* Returns precision
*/
lazy val precision: Double = tpByClass.values.sum.toDouble / labelCount

/**
* Returns recall
* (equals to precision for multiclass classifier
* because sum of all false positives is equal to sum
* of all false negatives)
*/
lazy val recall: Double = precision

/**
* Returns f-measure
* (equals to precision and recall because precision equals recall)
*/
lazy val fMeasure: Double = precision

/**
* Returns weighted true positive rate
* (equals to precision, recall and f-measure)
*/
lazy val weightedTruePositiveRate: Double = weightedRecall

/**
* Returns weighted false positive rate
*/
lazy val weightedFalsePositiveRate: Double = labelCountByClass.map { case (category, count) =>
falsePositiveRate(category) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged recall
* (equals to precision, recall and f-measure)
*/
lazy val weightedRecall: Double = labelCountByClass.map { case (category, count) =>
recall(category) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged precision
*/
lazy val weightedPrecision: Double = labelCountByClass.map { case (category, count) =>
precision(category) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged f-measure
* @param beta the beta parameter.
*/
def weightedFMeasure(beta: Double): Double = labelCountByClass.map { case (category, count) =>
fMeasure(category, beta) * count.toDouble / labelCount
}.sum

/**
* Returns weighted averaged f1-measure
*/
lazy val weightedFMeasure: Double = labelCountByClass.map { case (category, count) =>
fMeasure(category, 1.0) * count.toDouble / labelCount
}.sum

/**
* Returns the sequence of labels in ascending order
*/
lazy val labels: Array[Double] = tpByClass.keys.toArray.sorted
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.evaluation

import org.scalatest.FunSuite

import org.apache.spark.mllib.linalg.Matrices
import org.apache.spark.mllib.util.LocalSparkContext

class MulticlassMetricsSuite extends FunSuite with LocalSparkContext {
test("Multiclass evaluation metrics") {
/*
* Confusion matrix for 3-class classification with total 9 instances:
* |2|1|1| true class0 (4 instances)
* |1|3|0| true class1 (4 instances)
* |0|0|1| true class2 (1 instance)
*/
val confusionMatrix = Matrices.dense(3, 3, Array(2, 1, 0, 1, 3, 0, 1, 0, 1))
val labels = Array(0.0, 1.0, 2.0)
val predictionAndLabels = sc.parallelize(
Seq((0.0, 0.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0), (1.0, 1.0),
(1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)), 2)
val metrics = new MulticlassMetrics(predictionAndLabels)
val delta = 0.0000001
val fpRate0 = 1.0 / (9 - 4)
val fpRate1 = 1.0 / (9 - 4)
val fpRate2 = 1.0 / (9 - 1)
val precision0 = 2.0 / (2 + 1)
val precision1 = 3.0 / (3 + 1)
val precision2 = 1.0 / (1 + 1)
val recall0 = 2.0 / (2 + 2)
val recall1 = 3.0 / (3 + 1)
val recall2 = 1.0 / (1 + 0)
val f1measure0 = 2 * precision0 * recall0 / (precision0 + recall0)
val f1measure1 = 2 * precision1 * recall1 / (precision1 + recall1)
val f1measure2 = 2 * precision2 * recall2 / (precision2 + recall2)
val f2measure0 = (1 + 2 * 2) * precision0 * recall0 / (2 * 2 * precision0 + recall0)
val f2measure1 = (1 + 2 * 2) * precision1 * recall1 / (2 * 2 * precision1 + recall1)
val f2measure2 = (1 + 2 * 2) * precision2 * recall2 / (2 * 2 * precision2 + recall2)

assert(metrics.confusionMatrix.toArray.sameElements(confusionMatrix.toArray))
assert(math.abs(metrics.falsePositiveRate(0.0) - fpRate0) < delta)
assert(math.abs(metrics.falsePositiveRate(1.0) - fpRate1) < delta)
assert(math.abs(metrics.falsePositiveRate(2.0) - fpRate2) < delta)
assert(math.abs(metrics.precision(0.0) - precision0) < delta)
assert(math.abs(metrics.precision(1.0) - precision1) < delta)
assert(math.abs(metrics.precision(2.0) - precision2) < delta)
assert(math.abs(metrics.recall(0.0) - recall0) < delta)
assert(math.abs(metrics.recall(1.0) - recall1) < delta)
assert(math.abs(metrics.recall(2.0) - recall2) < delta)
assert(math.abs(metrics.fMeasure(0.0) - f1measure0) < delta)
assert(math.abs(metrics.fMeasure(1.0) - f1measure1) < delta)
assert(math.abs(metrics.fMeasure(2.0) - f1measure2) < delta)
assert(math.abs(metrics.fMeasure(0.0, 2.0) - f2measure0) < delta)
assert(math.abs(metrics.fMeasure(1.0, 2.0) - f2measure1) < delta)
assert(math.abs(metrics.fMeasure(2.0, 2.0) - f2measure2) < delta)

assert(math.abs(metrics.recall -
(2.0 + 3.0 + 1.0) / ((2 + 3 + 1) + (1 + 1 + 1))) < delta)
assert(math.abs(metrics.recall - metrics.precision) < delta)
assert(math.abs(metrics.recall - metrics.fMeasure) < delta)
assert(math.abs(metrics.recall - metrics.weightedRecall) < delta)
assert(math.abs(metrics.weightedFalsePositiveRate -
((4.0 / 9) * fpRate0 + (4.0 / 9) * fpRate1 + (1.0 / 9) * fpRate2)) < delta)
assert(math.abs(metrics.weightedPrecision -
((4.0 / 9) * precision0 + (4.0 / 9) * precision1 + (1.0 / 9) * precision2)) < delta)
assert(math.abs(metrics.weightedRecall -
((4.0 / 9) * recall0 + (4.0 / 9) * recall1 + (1.0 / 9) * recall2)) < delta)
assert(math.abs(metrics.weightedFMeasure -
((4.0 / 9) * f1measure0 + (4.0 / 9) * f1measure1 + (1.0 / 9) * f1measure2)) < delta)
assert(math.abs(metrics.weightedFMeasure(2.0) -
((4.0 / 9) * f2measure0 + (4.0 / 9) * f2measure1 + (1.0 / 9) * f2measure2)) < delta)
assert(metrics.labels.sameElements(labels))
}
}

0 comments on commit 04b01bb

Please sign in to comment.