forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
112 additions
and
0 deletions.
There are no files selected for viewing
112 changes: 112 additions & 0 deletions
112
mllib/src/main/scala/org/apache/spark/mllib/evaluation/MulticlassEvaluator.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.evaluation | ||
|
||
import org.apache.spark.rdd.RDD | ||
import org.apache.spark.Logging | ||
import org.apache.spark.SparkContext._ | ||
|
||
/** | ||
* Evaluator for multiclass classification. | ||
* | ||
* @param scoreAndLabels an RDD of (score, label) pairs. | ||
*/ | ||
class MulticlassEvaluator(scoreAndLabels: RDD[(Double, Double)]) extends Logging { | ||
|
||
/* class = category; label = instance of class; prediction = instance of class */ | ||
|
||
private lazy val labelCountByClass = scoreAndLabels.values.countByValue() | ||
private lazy val labelCount = labelCountByClass.foldLeft(0L){case(sum, (_, count)) => sum + count} | ||
private lazy val tpByClass = scoreAndLabels.map{ case (prediction, label) => (label, if(label == prediction) 1 else 0) }.reduceByKey{_ + _}.collectAsMap | ||
private lazy val fpByClass = scoreAndLabels.map{ case (prediction, label) => (prediction, if(prediction != label) 1 else 0) }.reduceByKey{_ + _}.collectAsMap | ||
|
||
/** | ||
* Returns Precision for a given label (category) | ||
* @param label the label. | ||
* @return Precision. | ||
*/ | ||
def precision(label: Double): Double = if(tpByClass(label) + fpByClass.getOrElse(label, 0) == 0) 0 | ||
else tpByClass(label).toDouble / (tpByClass(label) + fpByClass.getOrElse(label, 0)).toDouble | ||
|
||
/** | ||
* Returns Recall for a given label (category) | ||
* @param label the label. | ||
* @return Recall. | ||
*/ | ||
def recall(label: Double): Double = tpByClass(label).toDouble / labelCountByClass(label).toDouble | ||
|
||
/** | ||
* Returns F1-measure for a given label (category) | ||
* @param label the label. | ||
* @return F1-measure.*/ | ||
def f1Measure(label: Double): Double = 2 * precision(label) * recall(label) / (precision(label) + recall(label)) | ||
|
||
/** | ||
* Returns micro-averaged Recall (equals to microPrecision and microF1measure for multiclass classifier) | ||
* @return microRecall. | ||
*/ | ||
def microRecall: Double = tpByClass.foldLeft(0L){case (sum,(_, tp)) => sum + tp}.toDouble / labelCount.toDouble | ||
|
||
/** | ||
* Returns micro-averaged Precision (equals to microPrecision and microF1measure for multiclass classifier) | ||
* @return microPrecision. | ||
*/ | ||
def microPrecision: Double = microRecall | ||
|
||
/** | ||
* Returns micro-averaged F1-measure (equals to microPrecision and microRecall for multiclass classifier) | ||
* @return microF1measure. | ||
*/ | ||
def microF1Measure: Double = microRecall | ||
|
||
/** | ||
* Returns weighted averaged Recall | ||
* @return weightedRecall. | ||
*/ | ||
def weightedRecall: Double = labelCountByClass.foldLeft(0.0){case(wRecall, (category, count)) => wRecall + recall(category) * count.toDouble / labelCount.toDouble} | ||
|
||
/** | ||
* Returns weighted averaged Precision | ||
* @return weightedPrecision. | ||
*/ | ||
def weightedPrecision: Double = labelCountByClass.foldLeft(0.0){case(wPrecision, (category, count)) => wPrecision + precision(category) * count.toDouble / labelCount.toDouble} | ||
|
||
/** | ||
* Returns weighted averaged F1-measure | ||
* @return weightedF1Measure. | ||
*/ | ||
def weightedF1Measure: Double = 2 * weightedPrecision * weightedRecall / (weightedPrecision + weightedRecall) | ||
|
||
/** | ||
* Returns map with Precisions for individual classes | ||
* @return precisionPerClass. | ||
*/ | ||
def precisionPerClass = labelCountByClass.map{case (category, _) => (category, precision(category))}.toMap | ||
|
||
/** | ||
* Returns map with Recalls for individual classes | ||
* @return recallPerClass. | ||
*/ | ||
def recallPerClass = labelCountByClass.map{case (category, _) => (category, recall(category))}.toMap | ||
|
||
/** | ||
* Returns map with F1-measures for individual classes | ||
* @return f1MeasurePerClass. | ||
*/ | ||
def f1MeasurePerClass = labelCountByClass.map{case (category, _) => (category, f1Measure(category))}.toMap | ||
} |