Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add test for mixed-type dataset concatenation. #705

Merged
merged 1 commit into from
Aug 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions api/valor_api/backend/metrics/detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -787,6 +787,8 @@ def _convert_annotations_to_common_type(
source_type = core.get_annotation_type(
db=db, dataset=dataset, task_type=enums.TaskType.OBJECT_DETECTION
)
if target_type > source_type:
continue
core.convert_geometry(
db=db,
dataset=dataset,
Expand Down
349 changes: 347 additions & 2 deletions integration_tests/client/metrics/test_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,11 @@

import random

import numpy as np
import pytest
import requests
from geoalchemy2.functions import ST_Area
from sqlalchemy import select
from sqlalchemy import func, select
from sqlalchemy.orm import Session

from valor import (
Expand All @@ -23,7 +24,7 @@
)
from valor.enums import AnnotationType, EvaluationStatus, MetricType, TaskType
from valor.exceptions import ClientException
from valor.schemas import Box
from valor.schemas import Box, Polygon, Raster
from valor_api.backend import models


Expand Down Expand Up @@ -3237,3 +3238,347 @@ def test_evaluate_detection_model_with_no_predictions(
assert all([metric["value"] == 0 for metric in computed_metrics])
assert all([metric in computed_metrics for metric in expected_metrics])
assert all([metric in expected_metrics for metric in computed_metrics])


def test_evaluate_mixed_annotations(
db: Session,
client: Client,
dataset_name: str,
model_name: str,
image_height: int,
image_width: int,
):
"""Test the automatic conversion to rasters."""
datum = Datum(uid="datum1")

xmin, xmax, ymin, ymax = 11, 45, 37, 102
h, w = image_height, image_width
mask = np.zeros((h, w), dtype=bool)
mask[ymin:ymax, xmin:xmax] = True

pts = [
(xmin, ymin),
(xmin, ymax),
(xmax, ymax),
(xmax, ymin),
(xmin, ymin),
]
poly = Polygon([pts])
raster = Raster.from_numpy(mask)
box = Box.from_extrema(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax)

gt_box = GroundTruth(
datum=datum,
annotations=[
Annotation(
bounding_box=box,
labels=[Label(key="box", value="value")],
is_instance=True,
)
],
)
gt_polygon = GroundTruth(
datum=datum,
annotations=[
Annotation(
polygon=poly,
labels=[Label(key="polygon", value="value")],
is_instance=True,
)
],
)
gt_raster = GroundTruth(
datum=datum,
annotations=[
Annotation(
raster=raster,
labels=[Label(key="raster", value="value")],
is_instance=True,
)
],
)

pd_box = Prediction(
datum=datum,
annotations=[
Annotation(
raster=raster,
labels=[Label(key="box", value="value", score=0.88)],
is_instance=True,
)
],
)
pd_polygon = Prediction(
datum=datum,
annotations=[
Annotation(
raster=raster,
labels=[Label(key="polygon", value="value", score=0.89)],
is_instance=True,
)
],
)
pd_raster = Prediction(
datum=datum,
annotations=[
Annotation(
raster=raster,
labels=[Label(key="raster", value="value", score=0.9)],
is_instance=True,
)
],
)

dset_box = Dataset.create(f"{dataset_name}_box")
dset_polygon = Dataset.create(f"{dataset_name}_polygon")
dset_raster = Dataset.create(f"{dataset_name}_raster")

dset_box.add_groundtruth(gt_box)
dset_polygon.add_groundtruth(gt_polygon)
dset_raster.add_groundtruth(gt_raster)

dset_box.finalize()
dset_polygon.finalize()
dset_raster.finalize()

model = Model.create(model_name)

model.add_prediction(dset_box, pd_box)
model.add_prediction(dset_polygon, pd_polygon)
model.add_prediction(dset_raster, pd_raster)

assert db.scalar(select(func.count(models.Annotation.id))) == 6
assert (
db.scalar(
select(func.count(models.Annotation.id)).where(
models.Annotation.box.isnot(None)
)
)
== 1
)
assert (
db.scalar(
select(func.count(models.Annotation.id)).where(
models.Annotation.polygon.isnot(None)
)
)
== 1
)
assert (
db.scalar(
select(func.count(models.Annotation.id)).where(
models.Annotation.raster.isnot(None)
)
)
== 4
)

eval_job = model.evaluate_detection(
[dset_box, dset_polygon, dset_raster],
iou_thresholds_to_compute=[0.1, 0.6],
iou_thresholds_to_return=[0.1, 0.6],
metrics_to_return=[
"AP",
],
)
eval_job.wait_for_completion()

# show that all 6 annotations have a box now since it is the common type.
assert db.scalar(select(func.count(models.Annotation.id))) == 6
assert (
db.scalar(
select(func.count(models.Annotation.id)).where(
models.Annotation.box.isnot(None)
)
)
== 6
)
assert (
db.scalar(
select(func.count(models.Annotation.id)).where(
models.Annotation.polygon.isnot(None)
)
)
== 1
)
assert (
db.scalar(
select(func.count(models.Annotation.id)).where(
models.Annotation.raster.isnot(None)
)
)
== 4
)

expected = [
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "polygon", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "polygon", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "box", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "box", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "raster", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "raster", "value": "value"},
},
]

for m in eval_job.metrics:
assert m in expected
for m in expected:
assert m in eval_job.metrics

eval_job_raster = model.evaluate_detection(
[dset_box, dset_polygon, dset_raster],
iou_thresholds_to_compute=[0.1, 0.6],
iou_thresholds_to_return=[0.1, 0.6],
metrics_to_return=[
"AP",
],
convert_annotations_to_type=AnnotationType.RASTER,
)
eval_job_raster.wait_for_completion()

expected = [
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "raster", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "raster", "value": "value"},
},
]

for m in eval_job_raster.metrics:
assert m in expected
for m in expected:
assert m in eval_job_raster.metrics

eval_job_poly = model.evaluate_detection(
[dset_box, dset_polygon, dset_raster],
iou_thresholds_to_compute=[0.1, 0.6],
iou_thresholds_to_return=[0.1, 0.6],
metrics_to_return=[
"AP",
],
convert_annotations_to_type=AnnotationType.POLYGON,
)
eval_job_poly.wait_for_completion()

expected = [
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "raster", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "raster", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "polygon", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "polygon", "value": "value"},
},
]

for m in eval_job_poly.metrics:
assert m in expected
for m in expected:
assert m in eval_job_poly.metrics

eval_job_box = model.evaluate_detection(
[dset_box, dset_polygon, dset_raster],
iou_thresholds_to_compute=[0.1, 0.6],
iou_thresholds_to_return=[0.1, 0.6],
metrics_to_return=[
"AP",
],
convert_annotations_to_type=AnnotationType.BOX,
)
eval_job_box.wait_for_completion()

expected = [
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "raster", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "raster", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "box", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "box", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.1},
"value": 1.0,
"label": {"key": "polygon", "value": "value"},
},
{
"type": "AP",
"parameters": {"iou": 0.6},
"value": 1.0,
"label": {"key": "polygon", "value": "value"},
},
]

for m in eval_job_box.metrics:
assert m in expected
for m in expected:
assert m in eval_job_box.metrics
Loading