Skip to content

Valor is a lightweight, numpy-based library designed for fast and seamless evaluation of machine learning models.

License

Notifications You must be signed in to change notification settings

Striveworks/valor

Repository files navigation

Valor: Fast and Efficient ML Evaluation

badge

valor-lite is a lightweight, numpy-based library designed for fast and seamless evaluation of machine learning models. It is optimized for environments where quick, responsive evaluations are essential, whether as part of a larger service or embedded within user-facing tools. Valor empowers data scientists and engineers to evaluate the performance of their machine learning pipelines and use those evaluations to make better modeling decisions in the future.

Valor is maintained by Striveworks, a cutting-edge MLOps company based out of Austin, Texas. It's core developers are Charles Zaloom, Nick Lind, Benjamin Nativi, and Eric Korman.

We'd love to learn more about your interest in Valor and answer any questions you may have; please don't hesitate to reach out to us on Slack or GitHub.

For more information, please see our user docs.

Installation

PyPi

pip install valor-lite

Source

git clone https://github.com/Striveworks/valor.git
cd valor
make install

Usage

Classification

from valor_lite.classification import DataLoader, Classification, MetricType

classifications = [
    Classification(
        uid="uid0",
        groundtruth="dog",
        predictions=["dog", "cat", "bird"],
        scores=[0.75, 0.2, 0.05],
    ),
    Classification(
        uid="uid1",
        groundtruth="cat",
        predictions=["dog", "cat", "bird"],
        scores=[0.41, 0.39, 0.1],
    ),
]

loader = DataLoader()
loader.add_data(classifications)
evaluator = loader.finalize()

metrics = evaluator.evaluate()

assert metrics[MetricType.Precision][0].to_dict() == {
    'type': 'Precision',
    'value': [0.5],
    'parameters': {
        'score_thresholds': [0.0],
        'hardmax': True,
        'label': 'dog'
    }
}

Object Detection

from valor_lite.object_detection import DataLoader, Detection, BoundingBox, MetricType

detections = [
    Detection(
        uid="uid0",
        groundtruths=[
            BoundingBox(
                xmin=0, xmax=10,
                ymin=0, ymax=10,
                labels=["dog"]
            ),
            BoundingBox(
                xmin=20, xmax=30,
                ymin=20, ymax=30,
                labels=["cat"]
            ),
        ],
        predictions=[
            BoundingBox(
                xmin=1, xmax=11,
                ymin=1, ymax=11,
                labels=["dog", "cat", "bird"],
                scores=[0.85, 0.1, 0.05]
            ),
            BoundingBox(
                xmin=21, xmax=31,
                ymin=21, ymax=31,
                labels=["dog", "cat", "bird"],
                scores=[0.34, 0.33, 0.33]
            ),
        ],
    ),
]

loader = DataLoader()
loader.add_bounding_boxes(detections)
evaluator = loader.finalize()

metrics = evaluator.evaluate()

assert metrics[MetricType.Precision][0].to_dict() == {
    'type': 'Precision',
    'value': 0.5,
    'parameters': {
        'iou_threshold': 0.5,
        'score_threshold': 0.5,
        'label': 'dog'
    }
}

Semantic Segmentation

import numpy as np
from valor_lite.semantic_segmentation import DataLoader, Segmentation, Bitmask, MetricType

segmentations = [
    Segmentation(
        uid="uid0",
        groundtruths=[
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="sky",
            ),
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="ground",
            )
        ],
        predictions=[
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="sky",
            ),
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="ground",
            )
        ]
    ),
]

loader = DataLoader()
loader.add_data(segmentations)
evaluator = loader.finalize()

print(metrics[MetricType.Precision][0])