Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor(backend): Centralize Block Cost into a Single File #8623

Merged
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 18 additions & 23 deletions autogpt_platform/backend/backend/blocks/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,6 @@ def AICredentialsField() -> AICredentials:
class ModelMetadata(NamedTuple):
provider: str
context_window: int
cost_factor: int


class LlmModelMeta(EnumMeta):
Expand Down Expand Up @@ -117,31 +116,27 @@ def provider(self) -> str:
def context_window(self) -> int:
return self.metadata.context_window

@property
def cost_factor(self) -> int:
return self.metadata.cost_factor


MODEL_METADATA = {
LlmModel.O1_PREVIEW: ModelMetadata("openai", 32000, cost_factor=16),
LlmModel.O1_MINI: ModelMetadata("openai", 62000, cost_factor=4),
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000, cost_factor=1),
LlmModel.GPT4O: ModelMetadata("openai", 128000, cost_factor=3),
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000, cost_factor=10),
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, cost_factor=1),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000, cost_factor=4),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000, cost_factor=1),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768, cost_factor=1),
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.LLAMA3_1_405B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.O1_PREVIEW: ModelMetadata("openai", 32000),
LlmModel.O1_MINI: ModelMetadata("openai", 62000),
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000),
LlmModel.GPT4O: ModelMetadata("openai", 128000),
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000),
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768),
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192),
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192),
LlmModel.LLAMA3_1_405B: ModelMetadata("groq", 8192),
# Limited to 16k during preview
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072, cost_factor=1),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072, cost_factor=1),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, cost_factor=1),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, cost_factor=1),
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192),
}

for model in LlmModel:
Expand Down
195 changes: 195 additions & 0 deletions autogpt_platform/backend/backend/data/block_cost_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
from typing import Type

from autogpt_libs.supabase_integration_credentials_store.store import (
anthropic_credentials,
did_credentials,
groq_credentials,
ideogram_credentials,
jina_credentials,
openai_credentials,
replicate_credentials,
revid_credentials,
)

from backend.blocks.ai_shortform_video_block import AIShortformVideoCreatorBlock
from backend.blocks.ideogram import IdeogramModelBlock
from backend.blocks.jina.search import SearchTheWebBlock
from backend.blocks.llm import (
MODEL_METADATA,
AIConversationBlock,
AIStructuredResponseGeneratorBlock,
AITextGeneratorBlock,
AITextSummarizerBlock,
LlmModel,
)
from backend.blocks.replicate_flux_advanced import ReplicateFluxAdvancedModelBlock
from backend.blocks.search import ExtractWebsiteContentBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.data.block import Block
from backend.data.cost import BlockCost, BlockCostType

# =============== Configure the cost for each LLM Model call =============== #

MODEL_COST: dict[LlmModel, int] = {
LlmModel.O1_PREVIEW: 16,
LlmModel.O1_MINI: 4,
LlmModel.GPT4O_MINI: 1,
LlmModel.GPT4O: 3,
LlmModel.GPT4_TURBO: 10,
LlmModel.GPT3_5_TURBO: 1,
LlmModel.CLAUDE_3_5_SONNET: 4,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.LLAMA3_8B: 1,
LlmModel.LLAMA3_70B: 1,
LlmModel.MIXTRAL_8X7B: 1,
LlmModel.GEMMA_7B: 1,
LlmModel.GEMMA2_9B: 1,
LlmModel.LLAMA3_1_405B: 1,
# Limited to 16k during preview
majdyz marked this conversation as resolved.
Show resolved Hide resolved
LlmModel.LLAMA3_1_70B: 1,
LlmModel.LLAMA3_1_8B: 1,
LlmModel.OLLAMA_LLAMA3_8B: 1,
LlmModel.OLLAMA_LLAMA3_405B: 1,
}

for model in LlmModel:
if model not in MODEL_COST:
raise ValueError(f"Missing MODEL_COST for model: {model}")


LLM_COST = (
[
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"api_key": None, # Running LLM with user own API key is free.
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": anthropic_credentials.id,
"provider": anthropic_credentials.provider,
"type": anthropic_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "anthropic"
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": openai_credentials.id,
"provider": openai_credentials.provider,
"type": openai_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "openai"
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {"id": groq_credentials.id},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "groq"
]
+ [
BlockCost(
# Default cost is running LlmModel.GPT4O.
cost_amount=MODEL_COST[LlmModel.GPT4O],
cost_filter={"api_key": None},
),
]
)

# =============== This is the exhaustive list of cost for each Block =============== #

BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
AIConversationBlock: LLM_COST,
AITextGeneratorBlock: LLM_COST,
AIStructuredResponseGeneratorBlock: LLM_COST,
AITextSummarizerBlock: LLM_COST,
CreateTalkingAvatarVideoBlock: [
BlockCost(
cost_amount=15,
cost_filter={
"credentials": {
"id": did_credentials.id,
"provider": did_credentials.provider,
"type": did_credentials.type,
}
},
)
],
SearchTheWebBlock: [
BlockCost(
cost_amount=1,
cost_filter={
"credentials": {
"id": jina_credentials.id,
"provider": jina_credentials.provider,
"type": jina_credentials.type,
}
},
)
],
ExtractWebsiteContentBlock: [
BlockCost(cost_amount=1, cost_filter={"raw_content": False})
],
IdeogramModelBlock: [
BlockCost(
cost_amount=1,
cost_filter={
"credentials": {
"id": ideogram_credentials.id,
"provider": ideogram_credentials.provider,
"type": ideogram_credentials.type,
}
},
)
],
AIShortformVideoCreatorBlock: [
BlockCost(
cost_amount=10,
cost_filter={
"credentials": {
"id": revid_credentials.id,
"provider": revid_credentials.provider,
"type": revid_credentials.type,
}
},
)
],
ReplicateFluxAdvancedModelBlock: [
BlockCost(
cost_amount=10,
cost_filter={
"credentials": {
"id": replicate_credentials.id,
"provider": replicate_credentials.provider,
"type": replicate_credentials.type,
}
},
)
],
}
32 changes: 32 additions & 0 deletions autogpt_platform/backend/backend/data/cost.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
from enum import Enum
from typing import Any, Optional

from pydantic import BaseModel

from backend.data.block import BlockInput


class BlockCostType(str, Enum):
RUN = "run" # cost X credits per run
BYTE = "byte" # cost X credits per byte
SECOND = "second" # cost X credits per second


class BlockCost(BaseModel):
cost_amount: int
cost_filter: BlockInput
cost_type: BlockCostType

def __init__(
self,
cost_amount: int,
cost_type: BlockCostType = BlockCostType.RUN,
cost_filter: Optional[BlockInput] = None,
**data: Any,
) -> None:
super().__init__(
cost_amount=cost_amount,
cost_filter=cost_filter or {},
cost_type=cost_type,
**data,
)
Loading
Loading