Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add sparselu benchmark #365

Merged
merged 2 commits into from
Aug 14, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 93 additions & 0 deletions benchmarks/sparselu.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
using BenchmarkTools, Random, VectorizationBase
using LinearAlgebra, SparseArrays, LinearSolve, Sparspak
import Pardiso
using Plots

BenchmarkTools.DEFAULT_PARAMETERS.seconds = 0.5

# Why do I need to set this ?
BenchmarkTools.DEFAULT_PARAMETERS.samples = 10



# Sparse matrix generation on a n-dimensional rectangular grid. After
# https://discourse.julialang.org/t/seven-lines-of-julia-examples-sought/50416/135
# by A. Braunstein.

A ⊕ B = kron(I(size(B, 1)), A) + kron(B, I(size(A, 1)))

function lattice(n; Tv = Float64)
d = fill(2 * one(Tv), n)
d[1] = one(Tv)
d[end] = one(Tv)
spdiagm(1 => -ones(Tv, n - 1), 0 => d, -1 => -ones(Tv, n - 1))
end

lattice(L...; Tv = Float64) = lattice(L[1]; Tv) ⊕ lattice(L[2:end]...; Tv)

#
# Create a matrix similar to that of a finite difference discretization in a `dim`-dimensional
# unit cube of ``-Δu + δu`` with approximately N unknowns. It is strictly diagonally dominant.
#
function fdmatrix(N; dim=2, Tv = Float64, δ = 1.0e-2)
n = N^(1 / dim) |> ceil |> Int
lattice([n for i in 1:dim]...; Tv) + Tv(δ) * I
end


algs = [UMFPACKFactorization(),KLUFactorization(),MKLPardisoFactorize(),SparspakFactorization()]
cols= [:red, :blue, :green, :magenta,:turqoise] # one color per alg
lst=[:dash,:solid, :dashdot] # one line style per dim

__parameterless_type(T) = Base.typename(T).wrapper
parameterless_type(x) = __parameterless_type(typeof(x))
parameterless_type(::Type{T}) where {T} = __parameterless_type(T)

#
# kmax=12 gives ≈ 40_000 unknowns max, can be watched in real time
# kmax=15 gives ≈ 328_000 unknows, you can go make a coffee.
# Main culprit is KLU factorization in 3D.
#
function run_and_plot(;dims=[1,2,3], kmax=12)

ns = [10 * 2^k for k in 0:kmax]

res = [ [Float64[] for i in 1:length(algs)] for dim in dims ]

for dim in dims
for i in 1:length(ns)
rng = MersenneTwister(123)
A = fdmatrix(ns[i];dim)
n = size(A,1)
@info "dim=$(dim): $n × $n"
b = rand(rng, n)
u0= rand(rng, n)

for j in 1:length(algs)
bt = @belapsed solve(prob, $(algs[j])).u setup=(prob = LinearProblem(copy($A), copy($b); u0 = copy($u0), alias_A=true, alias_b=true))
push!(res[dim][j], bt)
end
end
end

p = plot(;
ylabel = "Time/s",
xlabel = "N",
yscale=:log10,
xscale=:log10,
title = "Time for NxN sparse LU Factorization",
label = string(Symbol(parameterless_type(algs[1]))),
legend=:outertopright)

for dim in dims
for i in 1:length(algs)
plot!(p, ns, res[dim][i];
linecolor=cols[i],
linestyle= lst[dim],
label = "$(string(Symbol(parameterless_type(algs[i])))) $(dim)D" )
end
end
savefig("sparselubench.png")
savefig("sparselubench.pdf")
end

Loading