-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add Bilinear Tensor Product operator. #5014
Changes from 10 commits
611ee68
3ae1424
f5cb52c
4726927
44e1ac3
5cf8204
5f99ae9
ab41648
665eb01
0a6262d
c5d7107
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/bilinear_tensor_product_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
class BilinearTensorProductOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Weight"), | ||
"Input(Weight) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null."); | ||
auto x_dims = ctx->GetInputDim("X"); | ||
auto y_dims = ctx->GetInputDim("Y"); | ||
auto weight_dims = ctx->GetInputDim("Weight"); | ||
|
||
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "The input(X) must be a 2D Tensor."); | ||
PADDLE_ENFORCE_EQ(y_dims.size(), 2UL, "The input(Y) must be a 2D Tensor."); | ||
PADDLE_ENFORCE_EQ(weight_dims.size(), 3UL, | ||
"The input(Weight) must be a 3D tensor."); | ||
PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0], | ||
"The first dimension(batch_size) of input(X) must be " | ||
"equal to the first dimension of the input(Y)."); | ||
PADDLE_ENFORCE_EQ(x_dims[1], weight_dims[1], | ||
"The second dimension of input(X) must be equal to " | ||
"the second dimension of the input(Weight)."); | ||
PADDLE_ENFORCE_EQ(y_dims[1], weight_dims[2], | ||
"The second dimension of input(Y) must be equal to " | ||
"the third dimension of the input(Weight)."); | ||
|
||
if (ctx->HasInput("Bias")) { | ||
auto bias_dims = ctx->GetInputDim("Bias"); | ||
PADDLE_ENFORCE(bias_dims.size() == 2UL && bias_dims[0] == 1UL, | ||
"The Input(Bias) must be a 2-D tensor with " | ||
"the 2nd dimension fixed to 1 (a row vector)."); | ||
PADDLE_ENFORCE_EQ(bias_dims[1], weight_dims[0], | ||
"The second dimension of input(Bias) must be equal " | ||
"to the first dimension of the input(Weight)."); | ||
} | ||
|
||
ctx->SetOutputDim("Out", {x_dims[0], weight_dims[0]}); | ||
ctx->ShareLoD("X", /*->*/ "Out"); | ||
} | ||
}; | ||
|
||
class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
BilinearTensorProductOpMaker(framework::OpProto* proto, | ||
framework::OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", "The first input of bilinear_tensor_product operator."); | ||
AddInput("Y", "The second input of bilinear_tensor_product operator."); | ||
AddInput("Weight", | ||
"The learnable parameters of bilinear_tensor_product operator."); | ||
AddInput("Bias", "The learnable bias of bilinear_tensor_product operator.") | ||
.AsDispensable(); | ||
AddOutput("Out", "The output of bilinear_tensor_product operator."); | ||
AddComment(R"DOC( | ||
Bilinear Tensor Product operator. | ||
Given input X and Y, a 3D tensor weight, and bias. Each column of the | ||
output is computed by one slice i = 1, . . . , k of the tensor: | ||
|
||
M = (X W_i) \cdot Y | ||
Out_i = \sum_i {M_i} + Bias_i | ||
|
||
)DOC"); | ||
} | ||
}; | ||
|
||
class BilinearTensorProductOpGrad : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Weight"), | ||
"Input(Weight) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
"Input(Out@GRAD) should not be null."); | ||
auto x_dims = ctx->GetInputDim("X"); | ||
auto y_dims = ctx->GetInputDim("Y"); | ||
auto weight_dims = ctx->GetInputDim("Weight"); | ||
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); | ||
|
||
PADDLE_ENFORCE_EQ(out_dims.size(), 2UL, | ||
"The input(Out@GRAD) must be a 2D Tensor."); | ||
PADDLE_ENFORCE_EQ( | ||
x_dims[0], out_dims[0], | ||
"The first dimension(batch_size) of input(Out@GRAD) must be " | ||
"equal to the first dimension of the Input(X)."); | ||
PADDLE_ENFORCE_EQ( | ||
weight_dims[0], out_dims[1], | ||
"The second dimension of input(Out@GRAD) must be equal to " | ||
"the third dimension of the Input(Weight)."); | ||
|
||
if (ctx->HasInput("Bias")) { | ||
auto bias_dims = ctx->GetInputDim("Bias"); | ||
PADDLE_ENFORCE_EQ( | ||
bias_dims[1], out_dims[1], | ||
"The second dimension of input(Out@GRAD) must be equal to " | ||
"the second dimension of the Input(Bias)."); | ||
auto bias_grad_name = framework::GradVarName("Bias"); | ||
if (ctx->HasOutput(bias_grad_name)) | ||
ctx->SetOutputDim(bias_grad_name, bias_dims); | ||
} | ||
|
||
auto x_grad_name = framework::GradVarName("X"); | ||
auto y_grad_name = framework::GradVarName("Y"); | ||
auto weight_grad_name = framework::GradVarName("Weight"); | ||
|
||
if (ctx->HasOutput(x_grad_name)) { | ||
ctx->SetOutputDim(x_grad_name, x_dims); | ||
} | ||
if (ctx->HasOutput(y_grad_name)) { | ||
ctx->SetOutputDim(y_grad_name, y_dims); | ||
} | ||
if (ctx->HasOutput(weight_grad_name)) { | ||
ctx->SetOutputDim(weight_grad_name, weight_dims); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(bilinear_tensor_product, ops::BilinearTensorProductOp, | ||
ops::BilinearTensorProductOpMaker, bilinear_tensor_product_grad, | ||
ops::BilinearTensorProductOpGrad); | ||
REGISTER_OP_CPU_KERNEL( | ||
bilinear_tensor_product, | ||
ops::BilinearTensorProductKernel<paddle::platform::CPUPlace, float>, | ||
ops::BilinearTensorProductKernel<paddle::platform::CPUPlace, double>); | ||
REGISTER_OP_CPU_KERNEL( | ||
bilinear_tensor_product_grad, | ||
ops::BilinearTensorProductGradKernel<paddle::platform::CPUPlace, float>, | ||
ops::BilinearTensorProductGradKernel<paddle::platform::CPUPlace, double>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. License的缩进有问题。按照accuracy_op.h 。 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done |
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#define EIGEN_USE_GPU | ||
#include "paddle/operators/bilinear_tensor_product_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_GPU_KERNEL( | ||
bilinear_tensor_product, | ||
ops::BilinearTensorProductKernel<paddle::platform::GPUPlace, float>, | ||
ops::BilinearTensorProductKernel<paddle::platform::GPUPlace, double>); | ||
REGISTER_OP_GPU_KERNEL( | ||
bilinear_tensor_product_grad, | ||
ops::BilinearTensorProductGradKernel<paddle::platform::GPUPlace, float>, | ||
ops::BilinearTensorProductGradKernel<paddle::platform::GPUPlace, double>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/operators/math/math_function.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; | ||
|
||
template <typename Place, typename T> | ||
class BilinearTensorProductKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<Tensor>("X"); | ||
auto* y = ctx.Input<Tensor>("Y"); | ||
auto* weight = ctx.Input<Tensor>("Weight"); | ||
auto* bias = ctx.Input<Tensor>("Bias"); | ||
auto* out = ctx.Output<Tensor>("Out"); | ||
out->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto y_mat = EigenMatrix<T>::From(*y); | ||
auto output_mat = EigenMatrix<T>::From(*out); | ||
|
||
auto batch_size = x->dims()[0]; | ||
auto weight_dims = weight->dims(); | ||
int Out_dim = weight_dims[0]; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Out_dim --> out_dim 第一个字母不要大写。 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done |
||
int X_dim = weight_dims[1]; | ||
int Y_dim = weight_dims[2]; | ||
auto place = ctx.GetEigenDevice<Place>(); | ||
|
||
// Create the intermediate variable to caculate the result of | ||
// Input(X) multiplied by Input(Weight_i), the formula is: | ||
// left_mul = X Weight_i. | ||
Tensor left_mul; | ||
left_mul.mutable_data<T>(framework::make_ddim({batch_size, Y_dim}), | ||
ctx.GetPlace()); | ||
auto left_mul_mat = EigenMatrix<T>::From(left_mul); | ||
|
||
for (int i = 0; i < Out_dim; ++i) { | ||
auto output_col_vec = output_mat.chip(i, 1); | ||
Tensor weight_mat = | ||
weight->Slice(i, i + 1).Resize(framework::make_ddim({X_dim, Y_dim})); | ||
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans, | ||
batch_size, Y_dim, X_dim, 1, x->data<T>(), | ||
weight_mat.data<T>(), 0, left_mul.data<T>()); | ||
output_col_vec.device(place) = | ||
(left_mul_mat * y_mat).sum(Eigen::DSizes<int, 1>(1)); | ||
} | ||
if (bias) { | ||
auto bias_vec = EigenMatrix<T>::From(*bias); | ||
Eigen::DSizes<int, 2> bcast(batch_size, 1); | ||
output_mat.device(place) = bias_vec.broadcast(bcast) + output_mat; | ||
} | ||
} | ||
}; | ||
|
||
template <typename Place, typename T> | ||
class BilinearTensorProductGradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
const Tensor* x = ctx.Input<Tensor>("X"); | ||
const Tensor* y = ctx.Input<Tensor>("Y"); | ||
const Tensor* weight = ctx.Input<Tensor>("Weight"); | ||
Tensor* d_x = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
Tensor* d_y = ctx.Output<Tensor>(framework::GradVarName("Y")); | ||
Tensor* d_weight = ctx.Output<Tensor>(framework::GradVarName("Weight")); | ||
Tensor* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias")); | ||
const Tensor* d_out = ctx.Input<Tensor>(framework::GradVarName("Out")); | ||
|
||
auto batch_size = x->dims()[0]; | ||
auto weight_dims = weight->dims(); | ||
int Out_dim = weight_dims[0]; | ||
int X_dim = weight_dims[1]; | ||
int Y_dim = weight_dims[2]; | ||
|
||
auto x_mat = EigenMatrix<T>::From(*x); | ||
auto y_mat = EigenMatrix<T>::From(*y); | ||
auto d_out_mat = EigenMatrix<T>::From(*d_out); | ||
auto place = ctx.GetEigenDevice<Place>(); | ||
|
||
// Create the intermediate variable to caculate the Output(Y@Grad). | ||
Tensor x_scale; | ||
x_scale.mutable_data<T>(framework::make_ddim({batch_size, X_dim}), | ||
ctx.GetPlace()); | ||
auto x_scale_mat = EigenMatrix<T>::From(x_scale); | ||
|
||
// Create the intermediate variable to caculate the Output(X@Grad). | ||
Tensor y_scale; | ||
y_scale.mutable_data<T>(framework::make_ddim({batch_size, Y_dim}), | ||
ctx.GetPlace()); | ||
auto y_scale_mat = EigenMatrix<T>::From(y_scale); | ||
|
||
math::SetConstant<Place, T> set_zero; | ||
|
||
// Set Output(X@Grad) be zero. | ||
if (d_x) { | ||
d_x->mutable_data<T>(ctx.GetPlace()); | ||
set_zero(ctx.device_context(), d_x, static_cast<T>(0)); | ||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. if (d_x) d_x->mutable_data<T>(ctx.GetPlace()); Setting zero is not necessary here. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. There is an additive operation for d_x:
For this reason, the elements of d_x must be initialized as 0. Otherwise this op will lead to erroneous result. |
||
|
||
// Set Output(Y@Grad) be zero. | ||
if (d_y) { | ||
d_y->mutable_data<T>(ctx.GetPlace()); | ||
set_zero(ctx.device_context(), d_y, static_cast<T>(0)); | ||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. if (d_y) d_y->mutable_data<T>(ctx.GetPlace()); There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The same with d_x There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. the same to ... |
||
|
||
// Caculate the Output(X@Grad) and Output(Y@Grad). | ||
if (d_x || d_y) { | ||
Eigen::DSizes<int, 2> bcast_for_x(1, Y_dim); | ||
Eigen::DSizes<int, 2> bcast_for_y(1, X_dim); | ||
for (int i = 0; i < Out_dim; ++i) { | ||
Tensor weight_i = weight->Slice(i, i + 1).Resize( | ||
framework::make_ddim({X_dim, Y_dim})); | ||
auto output_vec = d_out_mat.chip(i, 1); | ||
if (d_x) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里由于broadcast是在batch的方向展开,且TMP = scaled(X) W,scaled(X)中每一行元素所乘的放缩系数不同,所以无法在矩阵乘法之后做scaling计算。即scaled(X) W != scaled(X W). |
||
y_scale_mat.device(place) = | ||
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1)) | ||
.broadcast(bcast_for_x) * | ||
y_mat; | ||
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasTrans, | ||
batch_size, X_dim, Y_dim, 1, y_scale.data<T>(), | ||
weight_i.data<T>(), 1, d_x->data<T>()); | ||
} | ||
if (d_y) { | ||
x_scale_mat.device(place) = | ||
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1)) | ||
.broadcast(bcast_for_y) * | ||
x_mat; | ||
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans, | ||
batch_size, Y_dim, X_dim, 1, x_scale.data<T>(), | ||
weight_i.data<T>(), 1, d_y->data<T>()); | ||
} | ||
} | ||
} | ||
|
||
// Caculate the gradient of Input(Weight). | ||
if (d_weight) { | ||
d_weight->mutable_data<T>(ctx.GetPlace()); | ||
Eigen::DSizes<int, 2> bcast_for_weight(1, X_dim); | ||
for (int i = 0; i < Out_dim; ++i) { | ||
Tensor d_weight_i = d_weight->Slice(i, i + 1).Resize( | ||
framework::make_ddim({X_dim, Y_dim})); | ||
auto output_vec = d_out_mat.chip(i, 1); | ||
x_scale_mat.device(place) = | ||
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1)) | ||
.broadcast(bcast_for_weight) * | ||
x_mat; | ||
math::gemm<Place, T>(ctx.device_context(), CblasTrans, CblasNoTrans, | ||
X_dim, Y_dim, batch_size, 1, x_scale.data<T>(), | ||
y->data<T>(), 0, d_weight_i.data<T>()); | ||
} | ||
} | ||
|
||
// Caculate the gradient of Input(Bias). | ||
if (d_bias) { | ||
d_bias->mutable_data<T>(ctx.GetPlace()); | ||
auto d_bias_mat = EigenMatrix<T>::From(*d_bias); | ||
d_bias_mat.device(place) = d_out_mat.sum(Eigen::DSizes<int, 1>(0)); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
be equal to
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done