Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Bilinear Tensor Product operator. #5014

Merged
merged 11 commits into from
Nov 14, 2017
159 changes: 159 additions & 0 deletions paddle/operators/bilinear_tensor_product_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/bilinear_tensor_product_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class BilinearTensorProductOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Weight"),
"Input(Weight) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
auto weight_dims = ctx->GetInputDim("Weight");

PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "The input(X) must be a 2D Tensor.");
PADDLE_ENFORCE_EQ(y_dims.size(), 2UL, "The input(Y) must be a 2D Tensor.");
PADDLE_ENFORCE_EQ(weight_dims.size(), 3UL,
"The input(Weight) must be a 3D tensor.");
PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0],
"The first dimension(batch_size) of input(X) must be "
"equal to the first dimension of the input(Y).");
PADDLE_ENFORCE_EQ(x_dims[1], weight_dims[1],
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

be equal to

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

"The second dimension of input(X) must be equal to "
"the second dimension of the input(Weight).");
PADDLE_ENFORCE_EQ(y_dims[1], weight_dims[2],
"The second dimension of input(Y) must be equal to "
"the third dimension of the input(Weight).");

if (ctx->HasInput("Bias")) {
auto bias_dims = ctx->GetInputDim("Bias");
PADDLE_ENFORCE(bias_dims.size() == 2UL && bias_dims[0] == 1UL,
"The Input(Bias) must be a 2-D tensor with "
"the 2nd dimension fixed to 1 (a row vector).");
PADDLE_ENFORCE_EQ(bias_dims[1], weight_dims[0],
"The second dimension of input(Bias) must be equal "
"to the first dimension of the input(Weight).");
}

ctx->SetOutputDim("Out", {x_dims[0], weight_dims[0]});
ctx->ShareLoD("X", /*->*/ "Out");
}
};

class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BilinearTensorProductOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of bilinear_tensor_product operator.");
AddInput("Y", "The second input of bilinear_tensor_product operator.");
AddInput("Weight",
"The learnable parameters of bilinear_tensor_product operator.");
AddInput("Bias", "The learnable bias of bilinear_tensor_product operator.")
.AsDispensable();
AddOutput("Out", "The output of bilinear_tensor_product operator.");
AddComment(R"DOC(
Bilinear Tensor Product operator.
Given input X and Y, a 3D tensor weight, and bias. Each column of the
output is computed by one slice i = 1, . . . , k of the tensor:

M = (X W_i) \cdot Y
Out_i = \sum_i {M_i} + Bias_i

)DOC");
}
};

class BilinearTensorProductOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Weight"),
"Input(Weight) should not be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
auto weight_dims = ctx->GetInputDim("Weight");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));

PADDLE_ENFORCE_EQ(out_dims.size(), 2UL,
"The input(Out@GRAD) must be a 2D Tensor.");
PADDLE_ENFORCE_EQ(
x_dims[0], out_dims[0],
"The first dimension(batch_size) of input(Out@GRAD) must be "
"equal to the first dimension of the Input(X).");
PADDLE_ENFORCE_EQ(
weight_dims[0], out_dims[1],
"The second dimension of input(Out@GRAD) must be equal to "
"the third dimension of the Input(Weight).");

if (ctx->HasInput("Bias")) {
auto bias_dims = ctx->GetInputDim("Bias");
PADDLE_ENFORCE_EQ(
bias_dims[1], out_dims[1],
"The second dimension of input(Out@GRAD) must be equal to "
"the second dimension of the Input(Bias).");
auto bias_grad_name = framework::GradVarName("Bias");
if (ctx->HasOutput(bias_grad_name))
ctx->SetOutputDim(bias_grad_name, bias_dims);
}

auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");
auto weight_grad_name = framework::GradVarName("Weight");

if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}
if (ctx->HasOutput(y_grad_name)) {
ctx->SetOutputDim(y_grad_name, y_dims);
}
if (ctx->HasOutput(weight_grad_name)) {
ctx->SetOutputDim(weight_grad_name, weight_dims);
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(bilinear_tensor_product, ops::BilinearTensorProductOp,
ops::BilinearTensorProductOpMaker, bilinear_tensor_product_grad,
ops::BilinearTensorProductOpGrad);
REGISTER_OP_CPU_KERNEL(
bilinear_tensor_product,
ops::BilinearTensorProductKernel<paddle::platform::CPUPlace, float>,
ops::BilinearTensorProductKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(
bilinear_tensor_product_grad,
ops::BilinearTensorProductGradKernel<paddle::platform::CPUPlace, float>,
ops::BilinearTensorProductGradKernel<paddle::platform::CPUPlace, double>);
26 changes: 26 additions & 0 deletions paddle/operators/bilinear_tensor_product_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Copy link
Contributor

@lcy-seso lcy-seso Nov 8, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

License的缩进有问题。按照accuracy_op.h 。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done


Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
#include "paddle/operators/bilinear_tensor_product_op.h"

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
bilinear_tensor_product,
ops::BilinearTensorProductKernel<paddle::platform::GPUPlace, float>,
ops::BilinearTensorProductKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(
bilinear_tensor_product_grad,
ops::BilinearTensorProductGradKernel<paddle::platform::GPUPlace, float>,
ops::BilinearTensorProductGradKernel<paddle::platform::GPUPlace, double>);
184 changes: 184 additions & 0 deletions paddle/operators/bilinear_tensor_product_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
class BilinearTensorProductKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* weight = ctx.Input<Tensor>("Weight");
auto* bias = ctx.Input<Tensor>("Bias");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());

auto y_mat = EigenMatrix<T>::From(*y);
auto output_mat = EigenMatrix<T>::From(*out);

auto batch_size = x->dims()[0];
auto weight_dims = weight->dims();
int Out_dim = weight_dims[0];
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Out_dim --> out_dim
X_dim --> x_dim
Y_dim -->y_dim

第一个字母不要大写。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

int X_dim = weight_dims[1];
int Y_dim = weight_dims[2];
auto place = ctx.GetEigenDevice<Place>();

// Create the intermediate variable to caculate the result of
// Input(X) multiplied by Input(Weight_i), the formula is:
// left_mul = X Weight_i.
Tensor left_mul;
left_mul.mutable_data<T>(framework::make_ddim({batch_size, Y_dim}),
ctx.GetPlace());
auto left_mul_mat = EigenMatrix<T>::From(left_mul);

for (int i = 0; i < Out_dim; ++i) {
auto output_col_vec = output_mat.chip(i, 1);
Tensor weight_mat =
weight->Slice(i, i + 1).Resize(framework::make_ddim({X_dim, Y_dim}));
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans,
batch_size, Y_dim, X_dim, 1, x->data<T>(),
weight_mat.data<T>(), 0, left_mul.data<T>());
output_col_vec.device(place) =
(left_mul_mat * y_mat).sum(Eigen::DSizes<int, 1>(1));
}
if (bias) {
auto bias_vec = EigenMatrix<T>::From(*bias);
Eigen::DSizes<int, 2> bcast(batch_size, 1);
output_mat.device(place) = bias_vec.broadcast(bcast) + output_mat;
}
}
};

template <typename Place, typename T>
class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const Tensor* x = ctx.Input<Tensor>("X");
const Tensor* y = ctx.Input<Tensor>("Y");
const Tensor* weight = ctx.Input<Tensor>("Weight");
Tensor* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
Tensor* d_y = ctx.Output<Tensor>(framework::GradVarName("Y"));
Tensor* d_weight = ctx.Output<Tensor>(framework::GradVarName("Weight"));
Tensor* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
const Tensor* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));

auto batch_size = x->dims()[0];
auto weight_dims = weight->dims();
int Out_dim = weight_dims[0];
int X_dim = weight_dims[1];
int Y_dim = weight_dims[2];

auto x_mat = EigenMatrix<T>::From(*x);
auto y_mat = EigenMatrix<T>::From(*y);
auto d_out_mat = EigenMatrix<T>::From(*d_out);
auto place = ctx.GetEigenDevice<Place>();

// Create the intermediate variable to caculate the Output(Y@Grad).
Tensor x_scale;
x_scale.mutable_data<T>(framework::make_ddim({batch_size, X_dim}),
ctx.GetPlace());
auto x_scale_mat = EigenMatrix<T>::From(x_scale);

// Create the intermediate variable to caculate the Output(X@Grad).
Tensor y_scale;
y_scale.mutable_data<T>(framework::make_ddim({batch_size, Y_dim}),
ctx.GetPlace());
auto y_scale_mat = EigenMatrix<T>::From(y_scale);

math::SetConstant<Place, T> set_zero;

// Set Output(X@Grad) be zero.
if (d_x) {
d_x->mutable_data<T>(ctx.GetPlace());
set_zero(ctx.device_context(), d_x, static_cast<T>(0));
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

 if (d_x)  d_x->mutable_data<T>(ctx.GetPlace());

Setting zero is not necessary here.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is an additive operation for d_x:

d_x = d_x + y_scale weight_i

For this reason, the elements of d_x must be initialized as 0. Otherwise this op will lead to erroneous result.


// Set Output(Y@Grad) be zero.
if (d_y) {
d_y->mutable_data<T>(ctx.GetPlace());
set_zero(ctx.device_context(), d_y, static_cast<T>(0));
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if (d_y)  d_y->mutable_data<T>(ctx.GetPlace());

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The same with d_x

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the same to ...
I see.


// Caculate the Output(X@Grad) and Output(Y@Grad).
if (d_x || d_y) {
Eigen::DSizes<int, 2> bcast_for_x(1, Y_dim);
Eigen::DSizes<int, 2> bcast_for_y(1, X_dim);
for (int i = 0; i < Out_dim; ++i) {
Tensor weight_i = weight->Slice(i, i + 1).Resize(
framework::make_ddim({X_dim, Y_dim}));
auto output_vec = d_out_mat.chip(i, 1);
if (d_x) {
Copy link
Contributor

@lcy-seso lcy-seso Nov 13, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

以 dx 为例 ,dy相同,
$dx = \frac{\partial{\mathcal{L}}}{\partial{Z}}WY^T$ 其中乘以 \partial{\mathcal{L}}}{\partial{Z} 是一个broadcast 的 “scaling” 运算。

为什么不可以在 135 ~ 138 之后再进行这个 “scaling” 运算呢?这样是不是就可以直接去掉 x_scalex_scale 这样两个中间变量(也避免分配内存的问题)。

不知是否可行。因为这个 "scaling" 操作从计算的逻辑上是可以 “原地” 运算。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里由于broadcast是在batch的方向展开,且TMP = scaled(X) W,scaled(X)中每一行元素所乘的放缩系数不同,所以无法在矩阵乘法之后做scaling计算。即scaled(X) W != scaled(X W).

y_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_x) *
y_mat;
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasTrans,
batch_size, X_dim, Y_dim, 1, y_scale.data<T>(),
weight_i.data<T>(), 1, d_x->data<T>());
}
if (d_y) {
x_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_y) *
x_mat;
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans,
batch_size, Y_dim, X_dim, 1, x_scale.data<T>(),
weight_i.data<T>(), 1, d_y->data<T>());
}
}
}

// Caculate the gradient of Input(Weight).
if (d_weight) {
d_weight->mutable_data<T>(ctx.GetPlace());
Eigen::DSizes<int, 2> bcast_for_weight(1, X_dim);
for (int i = 0; i < Out_dim; ++i) {
Tensor d_weight_i = d_weight->Slice(i, i + 1).Resize(
framework::make_ddim({X_dim, Y_dim}));
auto output_vec = d_out_mat.chip(i, 1);
x_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_weight) *
x_mat;
math::gemm<Place, T>(ctx.device_context(), CblasTrans, CblasNoTrans,
X_dim, Y_dim, batch_size, 1, x_scale.data<T>(),
y->data<T>(), 0, d_weight_i.data<T>());
}
}

// Caculate the gradient of Input(Bias).
if (d_bias) {
d_bias->mutable_data<T>(ctx.GetPlace());
auto d_bias_mat = EigenMatrix<T>::From(*d_bias);
d_bias_mat.device(place) = d_out_mat.sum(Eigen::DSizes<int, 1>(0));
}
}
};

} // namespace operators
} // namespace paddle
Loading