-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add Bilinear Tensor Product operator. #5014
Merged
lcy-seso
merged 11 commits into
PaddlePaddle:develop
from
peterzhang2029:bi_tensor_prod_op
Nov 14, 2017
Merged
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
611ee68
add bilinear tensor product op
peterzhang2029 3ae1424
update for mini-batch
peterzhang2029 f5cb52c
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
peterzhang2029 4726927
refine memory transform
peterzhang2029 44e1ac3
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
peterzhang2029 5cf8204
refine docString
peterzhang2029 5f99ae9
refine notation in bilinear_tensor_product_op.h
peterzhang2029 ab41648
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
peterzhang2029 665eb01
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
peterzhang2029 0a6262d
fix warning
peterzhang2029 c5d7107
refine var name
peterzhang2029 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/bilinear_tensor_product_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
class BilinearTensorProductOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Weight"), | ||
"Input(Weight) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null."); | ||
auto x_dims = ctx->GetInputDim("X"); | ||
auto y_dims = ctx->GetInputDim("Y"); | ||
auto weight_dims = ctx->GetInputDim("Weight"); | ||
|
||
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "The input(X) must be a 2D Tensor."); | ||
PADDLE_ENFORCE_EQ(y_dims.size(), 2UL, "The input(Y) must be a 2D Tensor."); | ||
PADDLE_ENFORCE_EQ(weight_dims.size(), 3UL, | ||
"The input(Weight) must be a 3D tensor."); | ||
PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0], | ||
"The first dimension(batch_size) of input(X) must be " | ||
"equal to the first dimension of the input(Y)."); | ||
PADDLE_ENFORCE_EQ(x_dims[1], weight_dims[1], | ||
"The second dimension of input(X) must be equal to " | ||
"the second dimension of the input(Weight)."); | ||
PADDLE_ENFORCE_EQ(y_dims[1], weight_dims[2], | ||
"The second dimension of input(Y) must be equal to " | ||
"the third dimension of the input(Weight)."); | ||
|
||
if (ctx->HasInput("Bias")) { | ||
auto bias_dims = ctx->GetInputDim("Bias"); | ||
PADDLE_ENFORCE(bias_dims.size() == 2UL && bias_dims[0] == 1UL, | ||
"The Input(Bias) must be a 2-D tensor with " | ||
"the 2nd dimension fixed to 1 (a row vector)."); | ||
PADDLE_ENFORCE_EQ(bias_dims[1], weight_dims[0], | ||
"The second dimension of input(Bias) must be equal " | ||
"to the first dimension of the input(Weight)."); | ||
} | ||
|
||
ctx->SetOutputDim("Out", {x_dims[0], weight_dims[0]}); | ||
ctx->ShareLoD("X", /*->*/ "Out"); | ||
} | ||
}; | ||
|
||
class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
BilinearTensorProductOpMaker(framework::OpProto* proto, | ||
framework::OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", "The first input of bilinear_tensor_product operator."); | ||
AddInput("Y", "The second input of bilinear_tensor_product operator."); | ||
AddInput("Weight", | ||
"The learnable parameters of bilinear_tensor_product operator."); | ||
AddInput("Bias", "The learnable bias of bilinear_tensor_product operator.") | ||
.AsDispensable(); | ||
AddOutput("Out", "The output of bilinear_tensor_product operator."); | ||
AddComment(R"DOC( | ||
Bilinear Tensor Product operator. | ||
Given input X and Y, a 3D tensor weight, and bias. Each column of the | ||
output is computed by one slice i = 1, . . . , k of the tensor: | ||
|
||
M = (X W_i) \cdot Y | ||
Out_i = \sum_i {M_i} + Bias_i | ||
|
||
)DOC"); | ||
} | ||
}; | ||
|
||
class BilinearTensorProductOpGrad : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Weight"), | ||
"Input(Weight) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
"Input(Out@GRAD) should not be null."); | ||
auto x_dims = ctx->GetInputDim("X"); | ||
auto y_dims = ctx->GetInputDim("Y"); | ||
auto weight_dims = ctx->GetInputDim("Weight"); | ||
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); | ||
|
||
PADDLE_ENFORCE_EQ(out_dims.size(), 2UL, | ||
"The input(Out@GRAD) must be a 2D Tensor."); | ||
PADDLE_ENFORCE_EQ( | ||
x_dims[0], out_dims[0], | ||
"The first dimension(batch_size) of input(Out@GRAD) must be " | ||
"equal to the first dimension of the Input(X)."); | ||
PADDLE_ENFORCE_EQ( | ||
weight_dims[0], out_dims[1], | ||
"The second dimension of input(Out@GRAD) must be equal to " | ||
"the third dimension of the Input(Weight)."); | ||
|
||
if (ctx->HasInput("Bias")) { | ||
auto bias_dims = ctx->GetInputDim("Bias"); | ||
PADDLE_ENFORCE_EQ( | ||
bias_dims[1], out_dims[1], | ||
"The second dimension of input(Out@GRAD) must be equal to " | ||
"the second dimension of the Input(Bias)."); | ||
auto bias_grad_name = framework::GradVarName("Bias"); | ||
if (ctx->HasOutput(bias_grad_name)) | ||
ctx->SetOutputDim(bias_grad_name, bias_dims); | ||
} | ||
|
||
auto x_grad_name = framework::GradVarName("X"); | ||
auto y_grad_name = framework::GradVarName("Y"); | ||
auto weight_grad_name = framework::GradVarName("Weight"); | ||
|
||
if (ctx->HasOutput(x_grad_name)) { | ||
ctx->SetOutputDim(x_grad_name, x_dims); | ||
} | ||
if (ctx->HasOutput(y_grad_name)) { | ||
ctx->SetOutputDim(y_grad_name, y_dims); | ||
} | ||
if (ctx->HasOutput(weight_grad_name)) { | ||
ctx->SetOutputDim(weight_grad_name, weight_dims); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(bilinear_tensor_product, ops::BilinearTensorProductOp, | ||
ops::BilinearTensorProductOpMaker, bilinear_tensor_product_grad, | ||
ops::BilinearTensorProductOpGrad); | ||
REGISTER_OP_CPU_KERNEL( | ||
bilinear_tensor_product, | ||
ops::BilinearTensorProductKernel<paddle::platform::CPUPlace, float>, | ||
ops::BilinearTensorProductKernel<paddle::platform::CPUPlace, double>); | ||
REGISTER_OP_CPU_KERNEL( | ||
bilinear_tensor_product_grad, | ||
ops::BilinearTensorProductGradKernel<paddle::platform::CPUPlace, float>, | ||
ops::BilinearTensorProductGradKernel<paddle::platform::CPUPlace, double>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#define EIGEN_USE_GPU | ||
#include "paddle/operators/bilinear_tensor_product_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_GPU_KERNEL( | ||
bilinear_tensor_product, | ||
ops::BilinearTensorProductKernel<paddle::platform::GPUPlace, float>, | ||
ops::BilinearTensorProductKernel<paddle::platform::GPUPlace, double>); | ||
REGISTER_OP_GPU_KERNEL( | ||
bilinear_tensor_product_grad, | ||
ops::BilinearTensorProductGradKernel<paddle::platform::GPUPlace, float>, | ||
ops::BilinearTensorProductGradKernel<paddle::platform::GPUPlace, double>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/operators/math/math_function.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; | ||
|
||
template <typename Place, typename T> | ||
class BilinearTensorProductKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<Tensor>("X"); | ||
auto* y = ctx.Input<Tensor>("Y"); | ||
auto* weight = ctx.Input<Tensor>("Weight"); | ||
auto* bias = ctx.Input<Tensor>("Bias"); | ||
auto* out = ctx.Output<Tensor>("Out"); | ||
out->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto y_mat = EigenMatrix<T>::From(*y); | ||
auto output_mat = EigenMatrix<T>::From(*out); | ||
|
||
auto batch_size = x->dims()[0]; | ||
auto weight_dims = weight->dims(); | ||
int out_dim = weight_dims[0]; | ||
auto x_dim = weight_dims[1]; | ||
auto y_dim = weight_dims[2]; | ||
auto place = ctx.GetEigenDevice<Place>(); | ||
|
||
// Create the intermediate variable to caculate the result of | ||
// Input(X) multiplied by Input(Weight_i), the formula is: | ||
// left_mul = X Weight_i. | ||
Tensor left_mul; | ||
left_mul.mutable_data<T>(framework::make_ddim({batch_size, y_dim}), | ||
ctx.GetPlace()); | ||
auto left_mul_mat = EigenMatrix<T>::From(left_mul); | ||
|
||
for (int i = 0; i < out_dim; ++i) { | ||
auto output_col_vec = output_mat.chip(i, 1); | ||
Tensor weight_mat = | ||
weight->Slice(i, i + 1).Resize(framework::make_ddim({x_dim, y_dim})); | ||
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans, | ||
batch_size, y_dim, x_dim, 1, x->data<T>(), | ||
weight_mat.data<T>(), 0, left_mul.data<T>()); | ||
output_col_vec.device(place) = | ||
(left_mul_mat * y_mat).sum(Eigen::DSizes<int, 1>(1)); | ||
} | ||
if (bias) { | ||
auto bias_vec = EigenMatrix<T>::From(*bias); | ||
Eigen::DSizes<int, 2> bcast(batch_size, 1); | ||
output_mat.device(place) = bias_vec.broadcast(bcast) + output_mat; | ||
} | ||
} | ||
}; | ||
|
||
template <typename Place, typename T> | ||
class BilinearTensorProductGradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
const Tensor* x = ctx.Input<Tensor>("X"); | ||
const Tensor* y = ctx.Input<Tensor>("Y"); | ||
const Tensor* weight = ctx.Input<Tensor>("Weight"); | ||
Tensor* d_x = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
Tensor* d_y = ctx.Output<Tensor>(framework::GradVarName("Y")); | ||
Tensor* d_weight = ctx.Output<Tensor>(framework::GradVarName("Weight")); | ||
Tensor* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias")); | ||
const Tensor* d_out = ctx.Input<Tensor>(framework::GradVarName("Out")); | ||
|
||
auto batch_size = x->dims()[0]; | ||
auto weight_dims = weight->dims(); | ||
int out_dim = weight_dims[0]; | ||
auto x_dim = weight_dims[1]; | ||
auto y_dim = weight_dims[2]; | ||
|
||
auto x_mat = EigenMatrix<T>::From(*x); | ||
auto y_mat = EigenMatrix<T>::From(*y); | ||
auto d_out_mat = EigenMatrix<T>::From(*d_out); | ||
auto place = ctx.GetEigenDevice<Place>(); | ||
|
||
// Create the intermediate variable to caculate the Output(Y@Grad). | ||
Tensor x_scale; | ||
x_scale.mutable_data<T>(framework::make_ddim({batch_size, x_dim}), | ||
ctx.GetPlace()); | ||
auto x_scale_mat = EigenMatrix<T>::From(x_scale); | ||
|
||
// Create the intermediate variable to caculate the Output(X@Grad). | ||
Tensor y_scale; | ||
y_scale.mutable_data<T>(framework::make_ddim({batch_size, y_dim}), | ||
ctx.GetPlace()); | ||
auto y_scale_mat = EigenMatrix<T>::From(y_scale); | ||
|
||
math::SetConstant<Place, T> set_zero; | ||
|
||
// Set Output(X@Grad) be zero. | ||
if (d_x) { | ||
d_x->mutable_data<T>(ctx.GetPlace()); | ||
set_zero(ctx.device_context(), d_x, static_cast<T>(0)); | ||
} | ||
|
||
// Set Output(Y@Grad) be zero. | ||
if (d_y) { | ||
d_y->mutable_data<T>(ctx.GetPlace()); | ||
set_zero(ctx.device_context(), d_y, static_cast<T>(0)); | ||
} | ||
|
||
// Caculate the Output(X@Grad) and Output(Y@Grad). | ||
if (d_x || d_y) { | ||
Eigen::DSizes<int, 2> bcast_for_x(1, y_dim); | ||
Eigen::DSizes<int, 2> bcast_for_y(1, x_dim); | ||
for (int i = 0; i < out_dim; ++i) { | ||
Tensor weight_i = weight->Slice(i, i + 1).Resize( | ||
framework::make_ddim({x_dim, y_dim})); | ||
auto output_vec = d_out_mat.chip(i, 1); | ||
if (d_x) { | ||
y_scale_mat.device(place) = | ||
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1)) | ||
.broadcast(bcast_for_x) * | ||
y_mat; | ||
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasTrans, | ||
batch_size, x_dim, y_dim, 1, y_scale.data<T>(), | ||
weight_i.data<T>(), 1, d_x->data<T>()); | ||
} | ||
if (d_y) { | ||
x_scale_mat.device(place) = | ||
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1)) | ||
.broadcast(bcast_for_y) * | ||
x_mat; | ||
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans, | ||
batch_size, y_dim, x_dim, 1, x_scale.data<T>(), | ||
weight_i.data<T>(), 1, d_y->data<T>()); | ||
} | ||
} | ||
} | ||
|
||
// Caculate the gradient of Input(Weight). | ||
if (d_weight) { | ||
d_weight->mutable_data<T>(ctx.GetPlace()); | ||
Eigen::DSizes<int, 2> bcast_for_weight(1, x_dim); | ||
for (int i = 0; i < out_dim; ++i) { | ||
Tensor d_weight_i = d_weight->Slice(i, i + 1).Resize( | ||
framework::make_ddim({x_dim, y_dim})); | ||
auto output_vec = d_out_mat.chip(i, 1); | ||
x_scale_mat.device(place) = | ||
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1)) | ||
.broadcast(bcast_for_weight) * | ||
x_mat; | ||
math::gemm<Place, T>(ctx.device_context(), CblasTrans, CblasNoTrans, | ||
x_dim, y_dim, batch_size, 1, x_scale.data<T>(), | ||
y->data<T>(), 0, d_weight_i.data<T>()); | ||
} | ||
} | ||
|
||
// Caculate the gradient of Input(Bias). | ||
if (d_bias) { | ||
d_bias->mutable_data<T>(ctx.GetPlace()); | ||
auto d_bias_mat = EigenMatrix<T>::From(*d_bias); | ||
d_bias_mat.device(place) = d_out_mat.sum(Eigen::DSizes<int, 1>(0)); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
License的缩进有问题。按照accuracy_op.h 。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done