Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix the FP16 precision problem of add_n. #50129

Merged
merged 4 commits into from
Feb 2, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 8 additions & 6 deletions paddle/phi/kernels/gpu/add_n_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,11 @@

#include "paddle/phi/kernels/add_n_kernel.h"

#include "paddle/phi/kernels/impl/add_n_kernel_impl.h"

#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"

#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/common/float16.h"
liuruyan marked this conversation as resolved.
Show resolved Hide resolved
#include "paddle/phi/kernels/impl/add_n_kernel_impl.h"
namespace phi {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))
Expand All @@ -38,16 +38,18 @@ __global__ void Sum2CUDAKernel(const T *in_0,
template <class T>
__global__ void SumArrayCUDAKernel(
T **in, T *out, int64_t N, size_t in_size, bool read_dst) {
using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
int id = blockIdx.x * blockDim.x + threadIdx.x;
while (id < N) {
T total(read_dst ? out[id] : static_cast<T>(0));
MPType total(read_dst ? static_cast<MPType>(out[id])
: static_cast<MPType>(0));
for (int i = 0; i < in_size; ++i) {
const T *tmp = in[i];
if (tmp) {
total += tmp[id];
total += static_cast<MPType>(tmp[id]);
}
}
out[id] = total;
out[id] = static_cast<T>(total);
id += blockDim.x * gridDim.x;
}
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

只改这里应该不够吧?AddNKernel中有一些条件走了其他实现,比如如果是2个tensor,调用eigen库实现的,那里加法也需要提升到fp32计算。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已解决。

Expand Down
64 changes: 64 additions & 0 deletions python/paddle/fluid/tests/unittests/test_add_n_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import numpy as np

import paddle


class TestAddnOp(unittest.TestCase):
def setUp(self):
np.random.seed(20)
l = 32
self.x_np = np.random.random([l, 16, 256])

def check_main(self, x_np, dtype, axis=None):
paddle.disable_static()
x = []
for i in range(x_np.shape[0]):
val = paddle.to_tensor(x_np[i].astype(dtype))
val.stop_gradient = False
x.append(val)
y = paddle.add_n(x)
x_g = paddle.grad(y, x)
y_np = y.numpy().astype('float32')
x_g_np = []
for val in x_g:
x_g_np.append(val.numpy().astype('float32'))
paddle.enable_static()
return y_np, x_g_np

def test_add_n_fp16(self):
if not paddle.is_compiled_with_cuda():
return
y_np_16, x_g_np_16 = self.check_main(self.x_np, 'float16')
y_np_32, x_g_np_32 = self.check_main(self.x_np, 'float32')

np.testing.assert_allclose(y_np_16, y_np_32, rtol=1e-03)
for i in range(len(x_g_np_32)):
np.testing.assert_allclose(x_g_np_16[i], x_g_np_32[i], rtol=1e-03)

def test_add_n_api(self):
if not paddle.is_compiled_with_cuda():
return

y_np_32, x_g_np_32 = self.check_main(self.x_np, 'float32')
y_np_gt = np.sum(self.x_np, axis=0).astype('float32')

np.testing.assert_allclose(y_np_32, y_np_gt, rtol=1e-06)


if __name__ == "__main__":
unittest.main()