Skip to content

Commit

Permalink
Fix the FP16 precision problem of add_n. (#50129)
Browse files Browse the repository at this point in the history
  • Loading branch information
liuruyan authored Feb 2, 2023
1 parent ec6e0a2 commit 14dd68e
Show file tree
Hide file tree
Showing 2 changed files with 75 additions and 9 deletions.
20 changes: 11 additions & 9 deletions paddle/phi/kernels/gpu/add_n_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,10 @@

#include "paddle/phi/kernels/add_n_kernel.h"

#include "paddle/phi/kernels/impl/add_n_kernel_impl.h"

#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"

#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/impl/add_n_kernel_impl.h"
namespace phi {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))
Expand All @@ -38,16 +37,18 @@ __global__ void Sum2CUDAKernel(const T *in_0,
template <class T>
__global__ void SumArrayCUDAKernel(
T **in, T *out, int64_t N, size_t in_size, bool read_dst) {
using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
int id = blockIdx.x * blockDim.x + threadIdx.x;
while (id < N) {
T total(read_dst ? out[id] : static_cast<T>(0));
MPType total(read_dst ? static_cast<MPType>(out[id])
: static_cast<MPType>(0));
for (int i = 0; i < in_size; ++i) {
const T *tmp = in[i];
if (tmp) {
total += tmp[id];
total += static_cast<MPType>(tmp[id]);
}
}
out[id] = total;
out[id] = static_cast<T>(total);
id += blockDim.x * gridDim.x;
}
}
Expand Down Expand Up @@ -116,11 +117,12 @@ void AddNKernel(const Context &dev_ctx,
int64_t length_0 = in_0.numel();
int64_t length_1 = in_1.numel();
if (length_0 && length_1 && in_0.IsInitialized() && in_1.IsInitialized()) {
using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
auto result = EigenVector<T>::Flatten(*out);
auto &place = *dev_ctx.eigen_device();
auto in_0_e = EigenVector<T>::Flatten(in_0);
auto in_1_e = EigenVector<T>::Flatten(in_1);
result.device(place) = in_0_e + in_1_e;
auto in_0_e = EigenVector<T>::Flatten(in_0).template cast<MPType>();
auto in_1_e = EigenVector<T>::Flatten(in_1).template cast<MPType>();
result.device(place) = (in_0_e + in_1_e).template cast<T>();
} else if (length_0 && in_0.IsInitialized()) {
auto result = EigenVector<T>::Flatten(*out);
auto &place = *dev_ctx.eigen_device();
Expand Down
64 changes: 64 additions & 0 deletions python/paddle/fluid/tests/unittests/test_add_n_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import numpy as np

import paddle


class TestAddnOp(unittest.TestCase):
def setUp(self):
np.random.seed(20)
l = 32
self.x_np = np.random.random([l, 16, 256])

def check_main(self, x_np, dtype, axis=None):
paddle.disable_static()
x = []
for i in range(x_np.shape[0]):
val = paddle.to_tensor(x_np[i].astype(dtype))
val.stop_gradient = False
x.append(val)
y = paddle.add_n(x)
x_g = paddle.grad(y, x)
y_np = y.numpy().astype('float32')
x_g_np = []
for val in x_g:
x_g_np.append(val.numpy().astype('float32'))
paddle.enable_static()
return y_np, x_g_np

def test_add_n_fp16(self):
if not paddle.is_compiled_with_cuda():
return
y_np_16, x_g_np_16 = self.check_main(self.x_np, 'float16')
y_np_32, x_g_np_32 = self.check_main(self.x_np, 'float32')

np.testing.assert_allclose(y_np_16, y_np_32, rtol=1e-03)
for i in range(len(x_g_np_32)):
np.testing.assert_allclose(x_g_np_16[i], x_g_np_32[i], rtol=1e-03)

def test_add_n_api(self):
if not paddle.is_compiled_with_cuda():
return

y_np_32, x_g_np_32 = self.check_main(self.x_np, 'float32')
y_np_gt = np.sum(self.x_np, axis=0).astype('float32')

np.testing.assert_allclose(y_np_32, y_np_gt, rtol=1e-06)


if __name__ == "__main__":
unittest.main()

0 comments on commit 14dd68e

Please sign in to comment.