forked from isl-org/Open3D-ML
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add tum facade dataset (isl-org#613)
added dataset classes for the TUM-Facade dataset (https://github.com/OloOcki/tum-facade ) and updated the init file --------- Co-authored-by: photolap <[email protected]> Co-authored-by: Sameer Sheorey <[email protected]>
- Loading branch information
1 parent
6f20459
commit 5ebe6e5
Showing
4 changed files
with
245 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
import glob | ||
from pathlib import Path | ||
import logging | ||
import numpy as np | ||
import open3d as o3d | ||
from ..utils import DATASET | ||
from .base_dataset import BaseDataset, BaseDatasetSplit | ||
|
||
log = logging.getLogger(__name__) | ||
|
||
|
||
class TUMFacade(BaseDataset): | ||
|
||
def __init__(self, | ||
dataset_path, | ||
info_path=None, | ||
name='TUM_Facade', | ||
cache_dir='./logs/cache', | ||
use_cache=False, | ||
use_global=False, | ||
**kwargs): | ||
"""Dataset classes for the TUM-Facade dataset. Semantic segmentation | ||
annotations over TUM-MLS-2016 point cloud data. | ||
Website: https://mediatum.ub.tum.de/node?id=1636761 | ||
Code: https://github.com/OloOcki/tum-facade | ||
Download: | ||
- Original: https://dataserv.ub.tum.de/index.php/s/m1636761.003 | ||
- Processed: https://tumde-my.sharepoint.com/:f:/g/personal/olaf_wysocki_tum_de/EjA8B_KGDyFEulRzmq-CG1QBBL4dZ7z5PoHeI8zMD0JxIQ?e=9MrMcl | ||
Data License: CC BY-NC-SA 4.0 | ||
Citation: | ||
- Paper: Wysocki, O. and Hoegner, L. and Stilla, U., TUM-FAÇADE: | ||
Reviewing and enriching point cloud benchmarks for façade | ||
segmentation, ISPRS 2022 | ||
- Dataset: Wysocki, Olaf and Tan, Yue and Zhang, Jiarui and | ||
Stilla, Uwe, TUM-FACADE dataset, TU Munich, 2023 | ||
README file from processed dataset website: | ||
The dataset split is provided in the following folder structure | ||
-->tum-facade | ||
-->pointclouds | ||
-->annotatedGlobalCRS | ||
-->test_files | ||
-->training_files | ||
-->validation_files | ||
-->annotatedLocalCRS | ||
-->test_files | ||
-->training_files | ||
-->validation_file | ||
The indivisual point clouds are compressed as .7z files and are | ||
stored in the .pcd format. | ||
To make use of the dataset split in open3D-ML, all the point cloud | ||
files have to be unpacked with 7Zip. The folder structure itself | ||
must not be modified, else the reading functionalities in open3D-ML | ||
are not going to work. As a path to the dataset, the path to the | ||
'tum-facade' folder must be set. | ||
The dataset is split in the following way (10.08.2023): | ||
Testing : Building Nr. 23 | ||
Training : Buildings Nr. 57, Nr.58, Nr. 60 | ||
Validation : Buildings Nr. 22, Nr.59, Nr. 62, Nr. 81 | ||
Initialize the function by passing the dataset and other details. | ||
Args: | ||
dataset_path: The path to the dataset to use. | ||
info_path: The path to the file that includes information about | ||
the dataset. This is default to dataset path if nothing is | ||
provided. | ||
name: The name of the dataset (TUM_Facade in this case). | ||
cache_dir: The directory where the cache is stored. | ||
use_cache: Indicates if the dataset should be cached. | ||
use_global: Inidcates if the dataset should be used in a local or | ||
the global CRS | ||
Returns: | ||
class: The corresponding class. | ||
""" | ||
super().__init__( | ||
dataset_path=dataset_path, | ||
info_path=info_path, | ||
name=name, | ||
cache_dir=cache_dir, | ||
use_cache=use_cache, | ||
use_global=use_global, # Diese habe ich selbst hinzugefügt | ||
**kwargs) | ||
cfg = self.cfg | ||
self.name = cfg.name | ||
self.dataset_path = cfg.dataset_path | ||
self.label_to_names = self.get_label_to_names() | ||
self.use_global = cfg.use_global | ||
if info_path is None: | ||
self.info_path = dataset_path | ||
|
||
if self.use_global: | ||
# Finding all the training files | ||
self.trainFiles = glob.glob( | ||
str( | ||
Path(cfg.dataset_path) / 'pointclouds' / | ||
'annotatedGlobalCRS' / 'training_files' / '*.pcd')) | ||
# Finding all the validation Files | ||
self.valFiles = glob.glob( | ||
str( | ||
Path(cfg.dataset_path) / 'pointclouds' / | ||
'annotatedGlobalCRS' / 'validation_files' / '*.pcd')) | ||
# Finding all the test files | ||
self.testFiles = glob.glob( | ||
str( | ||
Path(cfg.dataset_path) / 'pointclouds' / | ||
'annotatedGlobalCRS' / 'test_files' / '*.pcd')) | ||
|
||
elif not self.use_global: | ||
# Finding all the training files | ||
self.trainFiles = glob.glob( | ||
str( | ||
Path(cfg.dataset_path) / 'pointclouds' / | ||
'annotatedLocalCRS' / 'training_files' / '*.pcd')) | ||
# Finding all the validation Files | ||
self.valFiles = glob.glob( | ||
str( | ||
Path(cfg.dataset_path) / 'pointclouds' / | ||
'annotatedLocalCRS' / 'validation_files' / '*.pcd')) | ||
# Finding all the test files | ||
self.testFiles = glob.glob( | ||
str( | ||
Path(cfg.dataset_path) / 'pointclouds' / | ||
'annotatedLocalCRS' / 'test_files' / '*.pcd')) | ||
|
||
else: | ||
raise ValueError( | ||
"Invalid specification! use_global must either be True or False!" | ||
) | ||
|
||
@staticmethod | ||
def get_label_to_names(): # | ||
"""Returns a label to names dictionary object. | ||
Returns: | ||
A dict where keys are label numbers and values are the corresponding | ||
names. | ||
""" | ||
label_to_names = { | ||
0: 'not_assigned', | ||
1: 'wall', | ||
2: 'window', | ||
3: 'door', | ||
4: 'balcony', | ||
5: 'molding', | ||
6: 'deco', | ||
7: 'column', | ||
8: 'arch', | ||
9: 'drainpipe', | ||
10: 'stairs', | ||
11: 'ground_surface', | ||
12: 'terrain', | ||
13: 'roof', | ||
14: 'blinds', | ||
15: 'outer_ceiling_surface', | ||
16: 'interior', | ||
17: 'other' | ||
} | ||
return label_to_names | ||
|
||
def get_split(self, split): | ||
return TUMFacadeSplit(self, split=split) | ||
|
||
def get_split_list(self, split): | ||
"""Returns the list of data splits available. | ||
Args: | ||
split: A string identifying the dataset split that is usually one of | ||
'training', 'test', 'validation', or 'all'. | ||
Returns: | ||
A dataset split object providing the requested subset of the data. | ||
Raises: | ||
ValueError: Indicates that the split name passed is incorrect. The | ||
split name should be one of 'training', 'test', 'validation', or | ||
'all'. | ||
""" | ||
if split in ['train', 'training']: | ||
return self.trainFiles | ||
elif split in ['test', 'testing']: | ||
return self.testFiles | ||
elif split in ['val', 'validation']: | ||
return self.valFiles | ||
elif split in ['all']: | ||
return self.trainFiles + self.valFiles + self.testFiles | ||
else: | ||
raise ValueError("Invalid split {}".format(split)) | ||
|
||
def is_tested(self, attr): | ||
|
||
pass | ||
|
||
def save_test_result(self, results, attr): | ||
|
||
pass | ||
|
||
|
||
class TUMFacadeSplit(BaseDatasetSplit): | ||
|
||
def __init__(self, dataset, split='train'): | ||
super().__init__(dataset, split=split) | ||
log.info("Found {} pointclouds for {}".format(len(self.path_list), | ||
split)) | ||
|
||
def __len__(self): | ||
return len(self.path_list) | ||
|
||
def get_data(self, idx): | ||
pc_path = self.path_list[idx] | ||
data = o3d.t.io.read_point_cloud(pc_path).point | ||
points = data["positions"].numpy() | ||
points = np.float32(points) | ||
labels = data['classification'].numpy().astype(np.int32).reshape((-1,)) | ||
data = {'point': points, 'feat': None, 'label': labels} | ||
return data | ||
|
||
def get_attr(self, idx): | ||
pc_path = Path(self.path_list[idx]) | ||
pc_path = str(pc_path) | ||
name = pc_path.replace('.txt', '') | ||
parts = name.split("/") | ||
name = parts[-1] | ||
split = self.split | ||
attr = {'idx': idx, 'name': name, 'path': pc_path, 'split': split} | ||
return attr | ||
|
||
|
||
DATASET._register_module(TUMFacade) |