Skip to content

Commit

Permalink
Merge pull request #96 from JuliaControl/mhe_direct_initial_posteriori
Browse files Browse the repository at this point in the history
 added: MovingHorizonEstimator support for `direct=true`, initialized with `P̂(-1|-1)`
  • Loading branch information
franckgaga authored Sep 5, 2024
2 parents 1e4d3f8 + 0f161ba commit b320658
Show file tree
Hide file tree
Showing 18 changed files with 967 additions and 528 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ModelPredictiveControl"
uuid = "61f9bdb8-6ae4-484a-811f-bbf86720c31c"
authors = ["Francis Gagnon"]
version = "0.23.1"
version = "0.24.0"

[deps]
ControlSystemsBase = "aaaaaaaa-a6ca-5380-bf3e-84a91bcd477e"
Expand Down
178 changes: 92 additions & 86 deletions docs/src/assets/plot_controller.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
178 changes: 87 additions & 91 deletions docs/src/assets/plot_estimator.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion docs/src/internals/predictive_control.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,5 +33,5 @@ ModelPredictiveControl.linconstraint!(::PredictiveController, ::LinModel)
## Solve Optimization Problem

```@docs
ModelPredictiveControl.optim_objective!
ModelPredictiveControl.optim_objective!(::PredictiveController)
```
6 changes: 6 additions & 0 deletions docs/src/internals/state_estim.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,12 @@ ModelPredictiveControl.initpred!(::MovingHorizonEstimator, ::LinModel)
ModelPredictiveControl.linconstraint!(::MovingHorizonEstimator, ::LinModel)
```

## Solve Optimization Problem

```@docs
ModelPredictiveControl.optim_objective!(::MovingHorizonEstimator)
```

## Evaluate Estimated Output

```@docs
Expand Down
6 changes: 1 addition & 5 deletions docs/src/manual/linmpc.md
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,7 @@ mpc_mhe = LinMPC(estim, Hp=10, Hc=2, Mwt=[1, 1], Nwt=[0.1, 0.1])
mpc_mhe = setconstraint!(mpc_mhe, ymin=[45, -Inf])
```

The rejection is not improved here:
The rejection is indeed improved:

```@example 1
setstate!(model, zeros(model.nx))
Expand All @@ -216,10 +216,6 @@ savefig("plot3_LinMPC.svg"); nothing # hide

![plot3_LinMPC](plot3_LinMPC.svg)

This is because the more performant `direct=true` version of the [`MovingHorizonEstimator`](@ref)
is not not implemented yet. The rejection will be improved with the `direct=true` version
(coming soon).

## Adding Feedforward Compensation

Suppose that the load disturbance ``u_l`` of the last section is in fact caused by a
Expand Down
11 changes: 6 additions & 5 deletions src/controller/construct.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ The predictive controllers support both soft and hard constraints, defined by:
\mathbf{u_{min} - c_{u_{min}}} ϵ ≤&&\ \mathbf{u}(k+j) &≤ \mathbf{u_{max} + c_{u_{max}}} ϵ &&\qquad j = 0, 1 ,..., H_p - 1 \\
\mathbf{Δu_{min} - c_{Δu_{min}}} ϵ ≤&&\ \mathbf{Δu}(k+j) &≤ \mathbf{Δu_{max} + c_{Δu_{max}}} ϵ &&\qquad j = 0, 1 ,..., H_c - 1 \\
\mathbf{y_{min} - c_{y_{min}}} ϵ ≤&&\ \mathbf{ŷ}(k+j) &≤ \mathbf{y_{max} + c_{y_{max}}} ϵ &&\qquad j = 1, 2 ,..., H_p \\
\mathbf{x̂_{min} - c_{x̂_{min}}} ϵ ≤&&\ \mathbf{x̂}_{i}(k+j) &≤ \mathbf{x̂_{max} + c_{x̂_{max}}} ϵ &&\qquad j = H_p
\mathbf{x̂_{min} - c_{x̂_{min}}} ϵ ≤&&\ \mathbf{x̂}_i(k+j) &≤ \mathbf{x̂_{max} + c_{x̂_{max}}} ϵ &&\qquad j = H_p
\end{alignat*}
```
and also ``ϵ ≥ 0``. The last line is the terminal constraints applied on the states at the
Expand Down Expand Up @@ -435,7 +435,7 @@ The model predictions are evaluated from the deviation vectors (see [`setop!`](@
&= \mathbf{E ΔU} + \mathbf{F}
\end{aligned}
```
in which ``\mathbf{x̂_0}(k) = \mathbf{x̂}_{i}(k) - \mathbf{x̂_{op}}``, with ``i = k`` if
in which ``\mathbf{x̂_0}(k) = \mathbf{x̂}_i(k) - \mathbf{x̂_{op}}``, with ``i = k`` if
`estim.direct==true`, otherwise ``i = k - 1``. The predicted outputs ``\mathbf{Ŷ_0}`` and
measured disturbances ``\mathbf{D̂_0}`` respectively include ``\mathbf{ŷ_0}(k+j)`` and
``\mathbf{d̂_0}(k+j)`` values with ``j=1`` to ``H_p``, and input increments ``\mathbf{ΔU}``,
Expand All @@ -453,8 +453,9 @@ terminal states at ``k+H_p``:
&= \mathbf{e_x̂ ΔU} + \mathbf{f_x̂}
\end{aligned}
```
The ``\mathbf{F}`` and ``\mathbf{f_x̂}`` vectors are recalculated at each control period
``k``, see [`initpred!`](@ref) and [`linconstraint!`](@ref).
The matrices ``\mathbf{E, G, J, K, V, B, e_x̂, g_x̂, j_x̂, k_x̂, v_x̂, b_x̂}`` are defined in the
Extended Help section. The ``\mathbf{F}`` and ``\mathbf{f_x̂}`` vectors are recalculated at
each control period ``k``, see [`initpred!`](@ref) and [`linconstraint!`](@ref).
# Extended Help
!!! details "Extended Help"
Expand Down Expand Up @@ -529,7 +530,7 @@ function init_predmat(estim::StateEstimator{NT}, model::LinModel, Hp, Hc) where
# Apow_csum 3D array : Apow_csum[:,:,1] = A^0, Apow_csum[:,:,2] = A^1 + A^0, ...
Âpow_csum = cumsum(Âpow, dims=3)
# helper function to improve code clarity and be similar to eqs. in docstring:
getpower(array3D, power) = array3D[:,:, power+1]
getpower(array3D, power) = @views array3D[:,:, power+1]
# --- state estimates x̂ ---
kx̂ = getpower(Âpow, Hp)
K = Matrix{NT}(undef, Hp*ny, nx̂)
Expand Down
3 changes: 2 additions & 1 deletion src/controller/execute.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,8 @@ Solve the optimization problem of `mpc` [`PredictiveController`](@ref) and retur
results ``\mathbf{u}(k)``. Following the receding horizon principle, the algorithm discards
the optimal future manipulated inputs ``\mathbf{u}(k+1), \mathbf{u}(k+2), ...`` Note that
the method mutates `mpc` internal data but it does not modifies `mpc.estim` states. Call
[`updatestate!(mpc, u, ym, d)`](@ref) to update `mpc` state estimates.
[`preparestate!(mpc, ym, d)`](@ref) before `moveinput!`, and [`updatestate!(mpc, u, ym, d)`](@ref)
after, to update `mpc` state estimates.
Calling a [`PredictiveController`](@ref) object calls this method.
Expand Down
5 changes: 3 additions & 2 deletions src/estimator/construct.jl
Original file line number Diff line number Diff line change
Expand Up @@ -197,8 +197,9 @@ end
One integrator on each measured output by default if `model` is not a [`LinModel`](@ref).
If the integrator quantity per manipulated input `nint_u ≠ 0`, the method returns zero
integrator on each measured output.
Theres is no verification the augmented model remains observable. If the integrator quantity
per manipulated input `nint_u ≠ 0`, the method returns zero integrator on each measured
output.
"""
function default_nint(model::SimModel, i_ym=1:model.ny, nint_u=0)
validate_ym(model, i_ym)
Expand Down
8 changes: 5 additions & 3 deletions src/estimator/execute.jl
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ end
Init `estim.x̂0` states from current inputs `u`, measured outputs `ym` and disturbances `d`.
The method tries to find a good steady-state for the initial estimate ``\mathbf{x̂}(0)``. It
The method tries to find a good steady-state for the initial estimate ``\mathbf{x̂}``. It
removes the operating points with [`remove_op!`](@ref) and call [`init_estimate!`](@ref):
- If `estim.model` is a [`LinModel`](@ref), it finds the steady-state of the augmented model
Expand Down Expand Up @@ -203,7 +203,7 @@ Prepare `estim.x̂0` estimate with meas. outputs `ym` and dist. `d` for the curr
This function should be called at the beginning of each discrete time step. Its behavior
depends if `estim` is a [`StateEstimator`](@ref) in the current/filter (1.) or
delayed/predictor (2.) form:
delayed/predictor (2.) formulation:
1. If `estim.direct` is `true`, it removes the operating points with [`remove_op!`](@ref),
calls [`correct_estimate!`](@ref), and returns the corrected state estimate
Expand Down Expand Up @@ -246,7 +246,9 @@ This function should be called at the end of each discrete time step. It removes
operating points with [`remove_op!`](@ref), calls [`update_estimate!`](@ref) and returns the
state estimate for the next time step ``\mathbf{x̂}_k(k+1)``. The method [`preparestate!`](@ref)
should be called prior to this one to correct the estimate when applicable (if
`estim.direct == true`).
`estim.direct == true`). Note that the [`MovingHorizonEstimator`](@ref) with the default
`direct=true` option is not able to estimate ``\mathbf{x̂}_k(k+1)``, the returned value
is therefore the current corrected state ``\mathbf{x̂}_k(k)``.
# Examples
```jldoctest
Expand Down
18 changes: 12 additions & 6 deletions src/estimator/internal_model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ struct InternalModel{NT<:Real, SM<:SimModel} <: StateEstimator{NT}
x̂d::Vector{NT}
x̂s::Vector{NT}
ŷs::Vector{NT}
x̂snext::Vector{NT}
i_ym::Vector{Int}
nx̂::Int
nym::Int
Expand Down Expand Up @@ -43,14 +44,14 @@ struct InternalModel{NT<:Real, SM<:SimModel} <: StateEstimator{NT}
lastu0 = zeros(NT, nu)
# x̂0 and x̂d are same object (updating x̂d will update x̂0):
x̂d = x̂0 = zeros(NT, model.nx)
x̂s = zeros(NT, nxs)
x̂s, x̂snext = zeros(NT, nxs), zeros(NT, nxs)
ŷs = zeros(NT, ny)
direct = true # InternalModel always uses direct transmission from ym
corrected = [false]
buffer = StateEstimatorBuffer{NT}(nu, nx̂, nym, ny, nd)
return new{NT, SM}(
model,
lastu0, x̂op, f̂op, x̂0, x̂d, x̂s, ŷs,
lastu0, x̂op, f̂op, x̂0, x̂d, x̂s, ŷs, x̂snext,
i_ym, nx̂, nym, nyu, nxs,
As, Bs, Cs, Ds,
Â, B̂u, Ĉ, B̂d, D̂d, Ĉm, D̂dm,
Expand Down Expand Up @@ -247,9 +248,14 @@ function correct_estimate!(estim::InternalModel, y0m, d0)
ŷ0d = estim.buffer.
h!(ŷ0d, estim.model, estim.x̂d, d0)
ŷs = estim.ŷs
ŷs[estim.i_ym] .= @views y0m .- ŷ0d[estim.i_ym]
# ŷs=0 for unmeasured outputs :
map(i -> ŷs[i] = (i in estim.i_ym) ? ŷs[i] : 0, eachindex(ŷs))
for j in eachindex(ŷs) # broadcasting was allocating unexpectedly, so we use a loop
if j in estim.i_ym
i = estim.i_ym[j]
ŷs[j] = y0m[i] - ŷ0d[j]
else
ŷs[j] = 0
end
end
return nothing
end

Expand All @@ -276,7 +282,7 @@ function update_estimate!(estim::InternalModel, _ , d0, u0)
f!(x̂dnext, model, x̂d, u0, d0)
x̂d .= x̂dnext # this also updates estim.x̂0 (they are the same object)
# --------------- stochastic model -----------------------
x̂snext = similar(x̂s) # TODO: remove this allocation with a new buffer?
x̂snext = estim.x̂snext
mul!(x̂snext, estim.Âs, x̂s)
mul!(x̂snext, estim.B̂s, ŷs, 1, 1)
estim.x̂s .= x̂snext
Expand Down
Loading

2 comments on commit b320658

@franckgaga
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator register

Release notes:

  • breaking change: MovingHorizonEstimator now default to direct=true
  • added: the current/filter formulation of the MovingHorizonEstimator
  • doc: explicitly list all the keyword arguments of all the state estimator
  • added: InternalModel now produces 0 allocation with preparestate! and updatestate! calls
  • tests: new integration tests that compare unconstrained MHE to UKF and KF results
  • tests: new integration that compare LinModel and NonLinModel

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/114617

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.24.0 -m "<description of version>" b320658370181ce03d1306515e200f1a7108f179
git push origin v0.24.0

Please sign in to comment.