This is an environment for learning quadrupedal locomotion depending on either bullet physics engine or mujoco and dm_control (not implemented yet), containing
- Interfaces of quadruped states, creating terrain from elevation maps and environmental states
- Motor identification, i.e. Actuator Network
- Curriculum learning on disturbance and terrain
- Abundant command, force, torque, terrain and trajectory visualization
tianshou is used for training in our examples.
Requirements: python>=3.7
, pybullet>=3.2
, torch>=1.10
, numpy
, scipy
, wandb
For train, run:
PYTHONPATH=./ python example/loct/train.py --task example/lctv0.yaml \
--batch-size 8192 --repeat-per-collect 8 --step-per-epoch 160000 \
--norm-adv 1 --run-name example