Skip to content

Latest commit

 

History

History
31 lines (24 loc) · 1.19 KB

README.md

File metadata and controls

31 lines (24 loc) · 1.19 KB

Quadruped Locomotion Reinforcement Learning

This is an environment for learning quadrupedal locomotion depending on either bullet physics engine or mujoco and dm_control (not implemented yet), containing

  • Interfaces of quadruped states, creating terrain from elevation maps and environmental states
  • Motor identification, i.e. Actuator Network
  • Curriculum learning on disturbance and terrain
  • Abundant command, force, torque, terrain and trajectory visualization

tianshou is used for training in our examples.

linear rotate

Requirements: python>=3.7, pybullet>=3.2, torch>=1.10, numpy, scipy, wandb

For train, run:

PYTHONPATH=./ python example/loct/train.py --task example/lctv0.yaml \
  --batch-size 8192 --repeat-per-collect 8 --step-per-epoch 160000 \
  --norm-adv 1 --run-name example