Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adopt dpnp interface to asynchronous dpctl execution (Part #1) #1897

Merged
merged 13 commits into from
Jul 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/generate_coverage.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ jobs:

env:
python-ver: '3.10'
CHANNELS: '-c dppy/label/coverage -c intel -c conda-forge --override-channels'
CHANNELS: '-c dppy/label/dev -c intel -c conda-forge --override-channels'
# Install the latest oneAPI compiler to work around an issue
INSTALL_ONE_API: 'yes'

Expand Down
114 changes: 59 additions & 55 deletions dpnp/dpnp_algo/dpnp_arraycreation.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,13 @@
import math
import operator

import dpctl.tensor as dpt
import dpctl.utils as dpu
import numpy

import dpnp
import dpnp.dpnp_container as dpnp_container
import dpnp.dpnp_utils as utils
from dpnp.dpnp_array import dpnp_array

__all__ = [
"dpnp_geomspace",
Expand All @@ -16,6 +17,12 @@
]


def _as_usm_ndarray(a, usm_type, sycl_queue):
if isinstance(a, dpnp_array):
return a.get_array()
return dpt.asarray(a, usm_type=usm_type, sycl_queue=sycl_queue)


def dpnp_geomspace(
start,
stop,
Expand All @@ -40,14 +47,8 @@ def dpnp_geomspace(
else:
_usm_type = usm_type

if not dpnp.is_supported_array_type(start):
start = dpnp.asarray(
start, usm_type=_usm_type, sycl_queue=sycl_queue_normalized
)
if not dpnp.is_supported_array_type(stop):
stop = dpnp.asarray(
stop, usm_type=_usm_type, sycl_queue=sycl_queue_normalized
)
start = _as_usm_ndarray(start, _usm_type, sycl_queue_normalized)
stop = _as_usm_ndarray(stop, _usm_type, sycl_queue_normalized)

dt = numpy.result_type(start, stop, float(num))
dt = utils.map_dtype_to_device(dt, sycl_queue_normalized.sycl_device)
Expand All @@ -57,8 +58,8 @@ def dpnp_geomspace(
if dpnp.any(start == 0) or dpnp.any(stop == 0):
raise ValueError("Geometric sequence cannot include zero")

out_sign = dpnp.ones(
dpnp.broadcast_arrays(start, stop)[0].shape,
out_sign = dpt.ones(
dpt.broadcast_arrays(start, stop)[0].shape,
dtype=dt,
usm_type=_usm_type,
sycl_queue=sycl_queue_normalized,
Expand All @@ -72,15 +73,15 @@ def dpnp_geomspace(
stop[all_imag] = stop[all_imag].imag
out_sign[all_imag] = 1j

both_negative = (dpnp.sign(start) == -1) & (dpnp.sign(stop) == -1)
both_negative = (dpt.sign(start) == -1) & (dpt.sign(stop) == -1)
if dpnp.any(both_negative):
dpnp.negative(start[both_negative], out=start[both_negative])
dpnp.negative(stop[both_negative], out=stop[both_negative])
dpnp.negative(out_sign[both_negative], out=out_sign[both_negative])
dpt.negative(start[both_negative], out=start[both_negative])
dpt.negative(stop[both_negative], out=stop[both_negative])
dpt.negative(out_sign[both_negative], out=out_sign[both_negative])

log_start = dpnp.log10(start)
log_stop = dpnp.log10(stop)
result = dpnp_logspace(
log_start = dpt.log10(start)
log_stop = dpt.log10(stop)
res = dpnp_logspace(
log_start,
log_stop,
num=num,
Expand All @@ -89,19 +90,20 @@ def dpnp_geomspace(
dtype=dtype,
usm_type=_usm_type,
sycl_queue=sycl_queue_normalized,
)
).get_array()

if num > 0:
result[0] = start
res[0] = start
if num > 1 and endpoint:
result[-1] = stop
res[-1] = stop

result = out_sign * result
res = out_sign * res

if axis != 0:
result = dpnp.moveaxis(result, 0, axis)
res = dpt.moveaxis(res, 0, axis)

return result.astype(dtype, copy=False)
res = dpt.astype(res, dtype, copy=False)
return dpnp_array._create_from_usm_ndarray(res)


def dpnp_linspace(
Expand Down Expand Up @@ -129,14 +131,11 @@ def dpnp_linspace(
else:
_usm_type = usm_type

if not hasattr(start, "dtype") and not dpnp.isscalar(start):
start = dpnp.asarray(
start, usm_type=_usm_type, sycl_queue=sycl_queue_normalized
)
if not hasattr(stop, "dtype") and not dpnp.isscalar(stop):
stop = dpnp.asarray(
stop, usm_type=_usm_type, sycl_queue=sycl_queue_normalized
)
if not dpnp.isscalar(start):
start = _as_usm_ndarray(start, _usm_type, sycl_queue_normalized)

if not dpnp.isscalar(stop):
stop = _as_usm_ndarray(stop, _usm_type, sycl_queue_normalized)

dt = numpy.result_type(start, stop, float(num))
dt = utils.map_dtype_to_device(dt, sycl_queue_normalized.sycl_device)
Expand All @@ -155,7 +154,7 @@ def dpnp_linspace(

if dpnp.isscalar(start) and dpnp.isscalar(stop):
# Call linspace() function for scalars.
res = dpnp_container.linspace(
usm_res = dpt.linspace(
start,
stop,
num,
Expand All @@ -167,17 +166,17 @@ def dpnp_linspace(
if retstep is True and step_nan is False:
step = (stop - start) / step_num
else:
_start = dpnp.asarray(
usm_start = dpt.asarray(
start,
dtype=dt,
usm_type=_usm_type,
sycl_queue=sycl_queue_normalized,
)
_stop = dpnp.asarray(
usm_stop = dpt.asarray(
stop, dtype=dt, usm_type=_usm_type, sycl_queue=sycl_queue_normalized
)

res = dpnp_container.arange(
usm_res = dpt.arange(
0,
stop=num,
step=1,
Expand All @@ -187,28 +186,29 @@ def dpnp_linspace(
)

if step_nan is False:
step = (_stop - _start) / step_num
res = res.reshape((-1,) + (1,) * step.ndim)
res = res * step + _start
step = (usm_stop - usm_start) / step_num
usm_res = dpt.reshape(usm_res, (-1,) + (1,) * step.ndim, copy=False)
usm_res = usm_res * step
usm_res += usm_start

if endpoint and num > 1:
res[-1] = dpnp_container.full(step.shape, _stop)
usm_res[-1] = dpt.full(step.shape, usm_stop)

if axis != 0:
res = dpnp.moveaxis(res, 0, axis)
usm_res = dpt.moveaxis(usm_res, 0, axis)

if numpy.issubdtype(dtype, dpnp.integer):
dpnp.floor(res, out=res)
dpt.floor(usm_res, out=usm_res)

res = res.astype(dtype, copy=False)
res = dpt.astype(usm_res, dtype, copy=False)
res = dpnp_array._create_from_usm_ndarray(res)

if retstep is True:
if dpnp.isscalar(step):
step = dpnp.asarray(
step = dpt.asarray(
step, usm_type=res.usm_type, sycl_queue=res.sycl_queue
)
return (res, step)

return res, dpnp_array._create_from_usm_ndarray(step)
return res


Expand Down Expand Up @@ -239,12 +239,15 @@ def dpnp_logspace(
usm_type = "device" if usm_type_alloc is None else usm_type_alloc
else:
usm_type = usm_type
start = dpnp.asarray(start, usm_type=usm_type, sycl_queue=sycl_queue)
stop = dpnp.asarray(stop, usm_type=usm_type, sycl_queue=sycl_queue)
base = dpnp.asarray(base, usm_type=usm_type, sycl_queue=sycl_queue)
[start, stop, base] = dpnp.broadcast_arrays(start, stop, base)
base = dpnp.expand_dims(base, axis=axis)

start = _as_usm_ndarray(start, usm_type, sycl_queue)
stop = _as_usm_ndarray(stop, usm_type, sycl_queue)
base = _as_usm_ndarray(base, usm_type, sycl_queue)

[start, stop, base] = dpt.broadcast_arrays(start, stop, base)
base = dpt.expand_dims(base, axis=axis)

# assume res as not a tuple, because retstep is False
res = dpnp_linspace(
start,
stop,
Expand All @@ -254,11 +257,12 @@ def dpnp_logspace(
sycl_queue=sycl_queue,
endpoint=endpoint,
axis=axis,
)
).get_array()

if dtype is None:
return dpnp.power(base, res)
return dpnp.power(base, res).astype(dtype, copy=False)
dpt.pow(base, res, out=res)
if dtype is not None:
res = dpt.astype(res, dtype, copy=False)
return dpnp_array._create_from_usm_ndarray(res)


class dpnp_nd_grid:
Expand Down
Loading
Loading